Deep reinforcement learning for optimal experimental design in biology
The field of optimal experimental design uses mathematical techniques to determine experiments that are maximally informative from a given experimental setup. Here we apply a technique from artificial intelligence-reinforcement learning-to the optimal experimental design task of maximizing confidenc...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2022-11, Vol.18 (11), p.e1010695-e1010695 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The field of optimal experimental design uses mathematical techniques to determine experiments that are maximally informative from a given experimental setup. Here we apply a technique from artificial intelligence-reinforcement learning-to the optimal experimental design task of maximizing confidence in estimates of model parameter values. We show that a reinforcement learning approach performs favourably in comparison with a one-step ahead optimisation algorithm and a model predictive controller for the inference of bacterial growth parameters in a simulated chemostat. Further, we demonstrate the ability of reinforcement learning to train over a distribution of parameters, indicating that this approach is robust to parametric uncertainty. |
---|---|
ISSN: | 1553-7358 1553-734X 1553-7358 |
DOI: | 10.1371/journal.pcbi.1010695 |