wrmXpress: A modular package for high-throughput image analysis of parasitic and free-living worms
Advances in high-throughput and high-content imaging technologies require concomitant development of analytical software capable of handling large datasets and generating relevant phenotypic measurements. Several tools have been developed to analyze drug response phenotypes in parasitic and free-liv...
Gespeichert in:
Veröffentlicht in: | PLoS neglected tropical diseases 2022-11, Vol.16 (11), p.e0010937 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Advances in high-throughput and high-content imaging technologies require concomitant development of analytical software capable of handling large datasets and generating relevant phenotypic measurements. Several tools have been developed to analyze drug response phenotypes in parasitic and free-living worms, but these are siloed and often limited to specific instrumentation, worm species, and single phenotypes. No unified tool exists to analyze diverse high-content phenotypic imaging data of worms and provide a platform for future extensibility. We have developed wrmXpress, a unified framework for analyzing a variety of phenotypes matched to high-content experimental assays of free-living and parasitic nematodes and flatworms. We demonstrate its utility for analyzing a suite of phenotypes, including motility, development/size, fecundity, and feeding, and establish the package as a platform upon which to build future custom phenotypic modules. We show that wrmXpress can serve as an analytical workhorse for anthelmintic screening efforts across schistosomes, filarial nematodes, and free-living model nematodes and holds promise for enabling collaboration among investigators with diverse interests. |
---|---|
ISSN: | 1935-2735 1935-2727 1935-2735 |
DOI: | 10.1371/journal.pntd.0010937 |