Weakly supervised learning for multi-organ adenocarcinoma classification in whole slide images

The primary screening by automated computational pathology algorithms of the presence or absence of adenocarcinoma in biopsy specimens (e.g., endoscopic biopsy, transbronchial lung biopsy, and needle biopsy) of possible primary organs (e.g., stomach, colon, lung, and breast) and radical lymph node d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2022-11, Vol.17 (11), p.e0275378-e0275378
Hauptverfasser: Tsuneki, Masayuki, Kanavati, Fahdi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0275378
container_issue 11
container_start_page e0275378
container_title PloS one
container_volume 17
creator Tsuneki, Masayuki
Kanavati, Fahdi
description The primary screening by automated computational pathology algorithms of the presence or absence of adenocarcinoma in biopsy specimens (e.g., endoscopic biopsy, transbronchial lung biopsy, and needle biopsy) of possible primary organs (e.g., stomach, colon, lung, and breast) and radical lymph node dissection specimen is very useful and should be a powerful tool to assist surgical pathologists in routine histopathological diagnostic workflow. In this paper, we trained multi-organ deep learning models to classify adenocarcinoma in biopsy and radical lymph node dissection specimens whole slide images (WSIs). We evaluated the models on five independent test sets (stomach, colon, lung, breast, lymph nodes) to demonstrate the feasibility in multi-organ and lymph nodes specimens from different medical institutions, achieving receiver operating characteristic areas under the curves (ROC-AUCs) in the range of 0.91 -0.98.
doi_str_mv 10.1371/journal.pone.0275378
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2739406620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A727609925</galeid><doaj_id>oai_doaj_org_article_05c702d7f8a94967b50c3b352868f4b8</doaj_id><sourcerecordid>A727609925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-35ccdae72b20e5bb0d284d7c4798201bface78c2d4fccc1d3056ec99be0171d53</originalsourceid><addsrcrecordid>eNqNk01v1DAQhiMEomXhHyCIhIToYRfHTuzkglRVQFeqVInPG5ZjT7JeHHtrJ4X-exw2rTaoB-SDLfuZ157XM0nyPEOrjLDs7dYN3gqz2jkLK4RZQVj5IDnOKoKXFCPy8GB9lDwJYYtQQUpKHydHhOYZy1F2nPz4DuKnuUnDsAN_rQOo1IDwVts2bZxPu8H0eul8K2wqFFgnhZfauk6k0ogQdKOl6LWzqbbpr40zkAajFaS6Ey2Ep8mjRpgAz6Z5kXz98P7L2fny4vLj-uz0YilphfslKaRUAhiuMYKirpHCZa6YzFlVYpTVjZDASolV3kgpM0VQQUFWVQ0oY5kqyCJ5udfdGRf4ZE3gmJEqR3S0YJGs94RyYst3Pr7P33AnNP-7ETPkwvdaGuCokAxhxZpSVHlFWV0gSWpS4JKWTV6XUevddNtQd6Ak2N4LMxOdn1i94a275hUtCUU0CryZBLy7GiD0vNNBgjHCghumdxOMaR7RV_-g92c3Ua2ICWjbuHivHEX5KcOMoqrCo0ure6g4FHRaxjpqdNyfBZzMAiLTw---FUMIfP350_-zl9_m7OsDdgPC9JvgzDAWUpiD-R6U3oXgobkzOUN8bINbN_jYBnxqgxj24vCD7oJu6578ATUEA40</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2739406620</pqid></control><display><type>article</type><title>Weakly supervised learning for multi-organ adenocarcinoma classification in whole slide images</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Tsuneki, Masayuki ; Kanavati, Fahdi</creator><contributor>Bychkov, Andrey</contributor><creatorcontrib>Tsuneki, Masayuki ; Kanavati, Fahdi ; Bychkov, Andrey</creatorcontrib><description>The primary screening by automated computational pathology algorithms of the presence or absence of adenocarcinoma in biopsy specimens (e.g., endoscopic biopsy, transbronchial lung biopsy, and needle biopsy) of possible primary organs (e.g., stomach, colon, lung, and breast) and radical lymph node dissection specimen is very useful and should be a powerful tool to assist surgical pathologists in routine histopathological diagnostic workflow. In this paper, we trained multi-organ deep learning models to classify adenocarcinoma in biopsy and radical lymph node dissection specimens whole slide images (WSIs). We evaluated the models on five independent test sets (stomach, colon, lung, breast, lymph nodes) to demonstrate the feasibility in multi-organ and lymph nodes specimens from different medical institutions, achieving receiver operating characteristic areas under the curves (ROC-AUCs) in the range of 0.91 -0.98.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0275378</identifier><identifier>PMID: 36417401</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adenocarcinoma ; Adenocarcinoma - pathology ; Algorithms ; Analysis ; Biology and Life Sciences ; Biopsy ; Breast ; Breast - pathology ; Cancer ; Care and treatment ; Classification ; Colon ; Computer applications ; Deep learning ; Diagnosis ; Dissection ; Health care facilities ; Humans ; Image classification ; Lung cancer ; Lungs ; Lymph nodes ; Lymph Nodes - pathology ; Lymphatic system ; Machine learning ; Medical imaging ; Medical screening ; Medicine and Health Sciences ; Metastasis ; Pathology ; Probability ; Stomach ; Supervised learning ; Supervised Machine Learning ; Surgical instruments ; Tumors ; Workflow</subject><ispartof>PloS one, 2022-11, Vol.17 (11), p.e0275378-e0275378</ispartof><rights>Copyright: © 2022 Tsuneki, Kanavati. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Tsuneki, Kanavati. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Tsuneki, Kanavati 2022 Tsuneki, Kanavati</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-35ccdae72b20e5bb0d284d7c4798201bface78c2d4fccc1d3056ec99be0171d53</citedby><cites>FETCH-LOGICAL-c692t-35ccdae72b20e5bb0d284d7c4798201bface78c2d4fccc1d3056ec99be0171d53</cites><orcidid>0000-0003-3409-5485</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9683606/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9683606/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36417401$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Bychkov, Andrey</contributor><creatorcontrib>Tsuneki, Masayuki</creatorcontrib><creatorcontrib>Kanavati, Fahdi</creatorcontrib><title>Weakly supervised learning for multi-organ adenocarcinoma classification in whole slide images</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The primary screening by automated computational pathology algorithms of the presence or absence of adenocarcinoma in biopsy specimens (e.g., endoscopic biopsy, transbronchial lung biopsy, and needle biopsy) of possible primary organs (e.g., stomach, colon, lung, and breast) and radical lymph node dissection specimen is very useful and should be a powerful tool to assist surgical pathologists in routine histopathological diagnostic workflow. In this paper, we trained multi-organ deep learning models to classify adenocarcinoma in biopsy and radical lymph node dissection specimens whole slide images (WSIs). We evaluated the models on five independent test sets (stomach, colon, lung, breast, lymph nodes) to demonstrate the feasibility in multi-organ and lymph nodes specimens from different medical institutions, achieving receiver operating characteristic areas under the curves (ROC-AUCs) in the range of 0.91 -0.98.</description><subject>Adenocarcinoma</subject><subject>Adenocarcinoma - pathology</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Biology and Life Sciences</subject><subject>Biopsy</subject><subject>Breast</subject><subject>Breast - pathology</subject><subject>Cancer</subject><subject>Care and treatment</subject><subject>Classification</subject><subject>Colon</subject><subject>Computer applications</subject><subject>Deep learning</subject><subject>Diagnosis</subject><subject>Dissection</subject><subject>Health care facilities</subject><subject>Humans</subject><subject>Image classification</subject><subject>Lung cancer</subject><subject>Lungs</subject><subject>Lymph nodes</subject><subject>Lymph Nodes - pathology</subject><subject>Lymphatic system</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>Medical screening</subject><subject>Medicine and Health Sciences</subject><subject>Metastasis</subject><subject>Pathology</subject><subject>Probability</subject><subject>Stomach</subject><subject>Supervised learning</subject><subject>Supervised Machine Learning</subject><subject>Surgical instruments</subject><subject>Tumors</subject><subject>Workflow</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk01v1DAQhiMEomXhHyCIhIToYRfHTuzkglRVQFeqVInPG5ZjT7JeHHtrJ4X-exw2rTaoB-SDLfuZ157XM0nyPEOrjLDs7dYN3gqz2jkLK4RZQVj5IDnOKoKXFCPy8GB9lDwJYYtQQUpKHydHhOYZy1F2nPz4DuKnuUnDsAN_rQOo1IDwVts2bZxPu8H0eul8K2wqFFgnhZfauk6k0ogQdKOl6LWzqbbpr40zkAajFaS6Ey2Ep8mjRpgAz6Z5kXz98P7L2fny4vLj-uz0YilphfslKaRUAhiuMYKirpHCZa6YzFlVYpTVjZDASolV3kgpM0VQQUFWVQ0oY5kqyCJ5udfdGRf4ZE3gmJEqR3S0YJGs94RyYst3Pr7P33AnNP-7ETPkwvdaGuCokAxhxZpSVHlFWV0gSWpS4JKWTV6XUevddNtQd6Ak2N4LMxOdn1i94a275hUtCUU0CryZBLy7GiD0vNNBgjHCghumdxOMaR7RV_-g92c3Ua2ICWjbuHivHEX5KcOMoqrCo0ure6g4FHRaxjpqdNyfBZzMAiLTw---FUMIfP350_-zl9_m7OsDdgPC9JvgzDAWUpiD-R6U3oXgobkzOUN8bINbN_jYBnxqgxj24vCD7oJu6578ATUEA40</recordid><startdate>20221123</startdate><enddate>20221123</enddate><creator>Tsuneki, Masayuki</creator><creator>Kanavati, Fahdi</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3409-5485</orcidid></search><sort><creationdate>20221123</creationdate><title>Weakly supervised learning for multi-organ adenocarcinoma classification in whole slide images</title><author>Tsuneki, Masayuki ; Kanavati, Fahdi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-35ccdae72b20e5bb0d284d7c4798201bface78c2d4fccc1d3056ec99be0171d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adenocarcinoma</topic><topic>Adenocarcinoma - pathology</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Biology and Life Sciences</topic><topic>Biopsy</topic><topic>Breast</topic><topic>Breast - pathology</topic><topic>Cancer</topic><topic>Care and treatment</topic><topic>Classification</topic><topic>Colon</topic><topic>Computer applications</topic><topic>Deep learning</topic><topic>Diagnosis</topic><topic>Dissection</topic><topic>Health care facilities</topic><topic>Humans</topic><topic>Image classification</topic><topic>Lung cancer</topic><topic>Lungs</topic><topic>Lymph nodes</topic><topic>Lymph Nodes - pathology</topic><topic>Lymphatic system</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>Medical screening</topic><topic>Medicine and Health Sciences</topic><topic>Metastasis</topic><topic>Pathology</topic><topic>Probability</topic><topic>Stomach</topic><topic>Supervised learning</topic><topic>Supervised Machine Learning</topic><topic>Surgical instruments</topic><topic>Tumors</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsuneki, Masayuki</creatorcontrib><creatorcontrib>Kanavati, Fahdi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsuneki, Masayuki</au><au>Kanavati, Fahdi</au><au>Bychkov, Andrey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weakly supervised learning for multi-organ adenocarcinoma classification in whole slide images</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2022-11-23</date><risdate>2022</risdate><volume>17</volume><issue>11</issue><spage>e0275378</spage><epage>e0275378</epage><pages>e0275378-e0275378</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The primary screening by automated computational pathology algorithms of the presence or absence of adenocarcinoma in biopsy specimens (e.g., endoscopic biopsy, transbronchial lung biopsy, and needle biopsy) of possible primary organs (e.g., stomach, colon, lung, and breast) and radical lymph node dissection specimen is very useful and should be a powerful tool to assist surgical pathologists in routine histopathological diagnostic workflow. In this paper, we trained multi-organ deep learning models to classify adenocarcinoma in biopsy and radical lymph node dissection specimens whole slide images (WSIs). We evaluated the models on five independent test sets (stomach, colon, lung, breast, lymph nodes) to demonstrate the feasibility in multi-organ and lymph nodes specimens from different medical institutions, achieving receiver operating characteristic areas under the curves (ROC-AUCs) in the range of 0.91 -0.98.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>36417401</pmid><doi>10.1371/journal.pone.0275378</doi><tpages>e0275378</tpages><orcidid>https://orcid.org/0000-0003-3409-5485</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2022-11, Vol.17 (11), p.e0275378-e0275378
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2739406620
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adenocarcinoma
Adenocarcinoma - pathology
Algorithms
Analysis
Biology and Life Sciences
Biopsy
Breast
Breast - pathology
Cancer
Care and treatment
Classification
Colon
Computer applications
Deep learning
Diagnosis
Dissection
Health care facilities
Humans
Image classification
Lung cancer
Lungs
Lymph nodes
Lymph Nodes - pathology
Lymphatic system
Machine learning
Medical imaging
Medical screening
Medicine and Health Sciences
Metastasis
Pathology
Probability
Stomach
Supervised learning
Supervised Machine Learning
Surgical instruments
Tumors
Workflow
title Weakly supervised learning for multi-organ adenocarcinoma classification in whole slide images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A02%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weakly%20supervised%20learning%20for%20multi-organ%20adenocarcinoma%20classification%20in%20whole%20slide%20images&rft.jtitle=PloS%20one&rft.au=Tsuneki,%20Masayuki&rft.date=2022-11-23&rft.volume=17&rft.issue=11&rft.spage=e0275378&rft.epage=e0275378&rft.pages=e0275378-e0275378&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0275378&rft_dat=%3Cgale_plos_%3EA727609925%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2739406620&rft_id=info:pmid/36417401&rft_galeid=A727609925&rft_doaj_id=oai_doaj_org_article_05c702d7f8a94967b50c3b352868f4b8&rfr_iscdi=true