Weakly supervised learning for multi-organ adenocarcinoma classification in whole slide images
The primary screening by automated computational pathology algorithms of the presence or absence of adenocarcinoma in biopsy specimens (e.g., endoscopic biopsy, transbronchial lung biopsy, and needle biopsy) of possible primary organs (e.g., stomach, colon, lung, and breast) and radical lymph node d...
Gespeichert in:
Veröffentlicht in: | PloS one 2022-11, Vol.17 (11), p.e0275378-e0275378 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The primary screening by automated computational pathology algorithms of the presence or absence of adenocarcinoma in biopsy specimens (e.g., endoscopic biopsy, transbronchial lung biopsy, and needle biopsy) of possible primary organs (e.g., stomach, colon, lung, and breast) and radical lymph node dissection specimen is very useful and should be a powerful tool to assist surgical pathologists in routine histopathological diagnostic workflow. In this paper, we trained multi-organ deep learning models to classify adenocarcinoma in biopsy and radical lymph node dissection specimens whole slide images (WSIs). We evaluated the models on five independent test sets (stomach, colon, lung, breast, lymph nodes) to demonstrate the feasibility in multi-organ and lymph nodes specimens from different medical institutions, achieving receiver operating characteristic areas under the curves (ROC-AUCs) in the range of 0.91 -0.98. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0275378 |