Age prediction from coronary angiography using a deep neural network: Age as a potential label to extract prognosis-related imaging features

Coronary angiography (CAG) is still considered the reference standard for coronary artery assessment, especially in the treatment of acute coronary syndrome (ACS). Although aging causes changes in coronary arteries, the age-related imaging features on CAG and their prognostic relevance have not been...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2022-10, Vol.17 (10), p.e0276928-e0276928
Hauptverfasser: Sawano, Shinnosuke, Kodera, Satoshi, Sato, Masataka, Katsushika, Susumu, Sukeda, Issei, Takeuchi, Hirotoshi, Shinohara, Hiroki, Kobayashi, Atsushi, Takiguchi, Hiroshi, Hirose, Kazutoshi, Kamon, Tatsuya, Saito, Akihito, Kiriyama, Hiroyuki, Miura, Mizuki, Minatsuki, Shun, Kikuchi, Hironobu, Higashikuni, Yasutomi, Takeda, Norifumi, Fujiu, Katsuhito, Ando, Jiro, Akazawa, Hiroshi, Morita, Hiroyuki, Komuro, Issei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Coronary angiography (CAG) is still considered the reference standard for coronary artery assessment, especially in the treatment of acute coronary syndrome (ACS). Although aging causes changes in coronary arteries, the age-related imaging features on CAG and their prognostic relevance have not been fully characterized. We hypothesized that a deep neural network (DNN) model could be trained to estimate vascular age only using CAG and that this age prediction from CAG could show significant associations with clinical outcomes of ACS. A DNN was trained to estimate vascular age using ten separate frames from each of 5,923 CAG videos from 572 patients. It was then tested on 1,437 CAG videos from 144 patients. Subsequently, 298 ACS patients who underwent percutaneous coronary intervention (PCI) were analysed to assess whether predicted age by DNN was associated with clinical outcomes. Age predicted as a continuous variable showed mean absolute error of 4 years with R squared of 0.72 (r = 0.856). Among the ACS patients stratified by predicted age from CAG images before PCI, major adverse cardiovascular events (MACE) were more frequently observed in the older vascular age group than in the younger vascular age group (p = 0.017). Furthermore, after controlling for actual age, gender, peak creatine kinase, and history of heart failure, the older vascular age group independently suffered from more MACE (hazard ratio 2.14, 95% CI 1.07 to 4.29, p = 0.032). The vascular age estimated based on CAG imaging by DNN showed high predictive value. The age predicted from CAG images by DNN could have significant associations with clinical outcomes in patients with ACS.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0276928