Learning rate of students detecting and annotating pediatric wrist fractures in supervised artificial intelligence dataset preparations

The use of artificial intelligence (AI) in image analysis is an intensively debated topic in the radiology community these days. AI computer vision algorithms typically rely on large-scale image databases, annotated by specialists. Developing and maintaining them is time-consuming, thus, the involve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2022-10, Vol.17 (10), p.e0276503-e0276503
Hauptverfasser: Nagy, Eszter, Marterer, Robert, Hržić, Franko, Sorantin, Erich, Tschauner, Sebastian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The use of artificial intelligence (AI) in image analysis is an intensively debated topic in the radiology community these days. AI computer vision algorithms typically rely on large-scale image databases, annotated by specialists. Developing and maintaining them is time-consuming, thus, the involvement of non-experts into the workflow of annotation should be considered. We assessed the learning rate of inexperienced evaluators regarding correct labeling of pediatric wrist fractures on digital radiographs. Students with and without a medical background labeled wrist fractures with bounding boxes in 7,000 radiographs over ten days. Pediatric radiologists regularly discussed their mistakes. We found F1 scores-as a measure for detection rate-to increase substantially under specialist feedback (mean 0.61±0.19 at day 1 to 0.97±0.02 at day 10, p
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0276503