Extended Wang sum and associated products
The Wang sum involving the exponential sums of Lerch’s Zeta functions is extended to the finite sum of the Huwitz-Lerch Zeta function to derive sums and products involving cosine and tangent trigonometric functions. The general theorem used to derive these sums and products is in the form of the fin...
Gespeichert in:
Veröffentlicht in: | PloS one 2022-10, Vol.17 (10), p.e0276078-e0276078 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Wang sum involving the exponential sums of Lerch’s Zeta functions is extended to the finite sum of the Huwitz-Lerch Zeta function to derive sums and products involving cosine and tangent trigonometric functions. The general theorem used to derive these sums and products is in the form of the finite sum over positive integers of the Hurwitz-Lerch Zeta function where the associated parameters are general complex numbers. New Hurwitz-Lerch Zeta function recurrence identities with consecutive neighbours are derived. Some finite sum and product formulae examples involving cosine, tangent and the product of cosine and tangent functions are also derived and evaluated. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0276078 |