Combined inhibition of BCR-ABL1 and the proteasome as a potential novel therapeutic approach in BCR-ABL positive acute lymphoblastic leukemia
Acute lymphoblastic leukemia (ALL) is a disease of lymphoid progenitor cells with an often aggressive course and is commonly caused by the BCR-ABL fusion gene t(9;22) in adults. This fusion gene encodes a constitutively active tyrosine kinase that can be effectively inhibited by tyrosine kinase inhi...
Gespeichert in:
Veröffentlicht in: | PloS one 2022-10, Vol.17 (10), p.e0268352-e0268352 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Acute lymphoblastic leukemia (ALL) is a disease of lymphoid progenitor cells with an often aggressive course and is commonly caused by the BCR-ABL fusion gene t(9;22) in adults. This fusion gene encodes a constitutively active tyrosine kinase that can be effectively inhibited by tyrosine kinase inhibitors (TKIs), with imatinib being the paradigmatic agent of this class. However, BCR-ABL+ ALL cells rapidly develop mutations against many of the available TKIs, and consecutive disease relapse still results in an overall unfavorable prognosis for patients with this disease. To date, allogeneic stem cell transplantation is the only known curative therapeutic option for the mostly elderly patients with BCR-ABL+ ALL. The discrepancy between the limited therapeutic armamentarium and the growing therapeutic need in an aging population is therefore a reason to test drug combinations against BCR-ABL+ ALL. In this study, we demonstrate that the combination of TKIs with proteasome inhibitors efficiently and under certain conditions synergistically exerts cytotoxic effects in BCR-ABL+ ALL cells in vitro with respect to the induction of apoptosis. Both sole and combined treatment of BCR-ABL+ ALL with the proteasome inhibitors bortezomib and ixazomib, respectively, and TKI causes a significantly greater reduction in cell viability than TKI treatment alone in both BCR-ABL+ cell lines TOM-1 and BV-173. In BV-173 cells, we observed a significant reduction in cell viability to only 1.26%±0.46% with bortezomib treatment and 1.57±0.7% with combination treatment, whereas cells treated with dasatinib alone still had a viable percentage of 40.58±2.6%. Similar results were obtained when ixazomib was applied to both cell lines, and apoptosis was induced in both cases (93.36%±2.7% apoptotic BV-173 cells when treated with ixazomib and TKI). The combination of TKI and proteasome inhibitor is efficient in vitro, potentially expanding the spectrum of therapeutic options for patients with BCR-ABL+ ALL. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0268352 |