Inadvertent QRS prolongation by an optimization device-based algorithm in patients with cardiac resynchronization therapy
Device-based algorithms offer the potential for automated optimization of cardiac resynchronization therapy (CRT), but the process for accepting them into clinical use is currently still ad-hoc, rather than based on pre-clinical and clinical testing of specific features of validity. We investigated...
Gespeichert in:
Veröffentlicht in: | PloS one 2022-09, Vol.17 (9), p.e0275276-e0275276 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Device-based algorithms offer the potential for automated optimization of cardiac resynchronization therapy (CRT), but the process for accepting them into clinical use is currently still ad-hoc, rather than based on pre-clinical and clinical testing of specific features of validity. We investigated how the QuickOpt-guided VV delay (VVD) programming performs against the clinical and engineering heuristic of QRS complex shortening by CRT. A prospective, 2-center study enrolled 37 consecutive patients with CRT. QRS complex duration (QRSd) was assessed during intrinsic atrioventricular conduction, synchronous biventricular pacing, and biventricular pacing with QuickOpt-proposed VVD. The measurements were done manually by electronic calipers in signal-averaged and magnified 12-lead QRS complexes. Native QRSd was 174 ± 22 ms. Biventricular pacing with empiric AVD and synchronous VVD resulted in QRSd 156 ± 20 ms, a significant narrowing from the baseline QRSd by 17 ± 27 ms, P = 0.0003. In 36 of 37 patients, the QuickOpt algorithm recommended left ventricular preexcitation with VVD of 42 ± 18 ms (median 40 ms; interquartile range 30-55 ms, P |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0275276 |