Siamese network with a depthwise over-parameterized convolutional layer for visual tracking

Visual tracking is a fundamental research task in vision computer. It has broad application prospects, such as military defense and civil security. Visual tracking encounters many challenges in practical application, such as occlusion, fast motion and background clutter. Siamese based trackers achie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2022-08, Vol.17 (8), p.e0273690-e0273690
Hauptverfasser: Wang, Yuanyun, Zhang, Wenshuang, Zhang, Limin, Wang, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Visual tracking is a fundamental research task in vision computer. It has broad application prospects, such as military defense and civil security. Visual tracking encounters many challenges in practical application, such as occlusion, fast motion and background clutter. Siamese based trackers achieve superior tracking performance in balanced accuracy and tracking speed. The deep feature extraction with Convolutional Neural Network (CNN) is an essential component in Siamese tracking framework. Although existing trackers take full advantage of deep feature information, the spatial structure and semantic information are not adequately exploited, which are helpful for enhancing target representations. The lack of these spatial and semantic information may lead to tracking drift. In this paper, we design a CNN feature extraction subnetwork based on a Depthwise Over-parameterized Convolutional layer (DO-Conv). A joint convolution method is introduced, namely the conventional and depthwise convolution. The depthwise convolution kernel explores independent channel information, which effectively extracts shallow spatial information and deep semantic information, and discards background information. Based on DO-Conv, we propose a novel tracking algorithm in Siamese framework (named DOSiam). Extensive experiments conducted on five benchmarks including OTB2015, VOT2016, VOT2018, GOT-10k and VOT2019-RGBT(TIR) show that the proposed DOSiam achieves leading tracking performance with real-time tracking speed at 60 FPS against state-of-the-art trackers.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0273690