Local and collective transitions in sparsely-interacting ecological communities
Interactions in natural communities can be highly heterogeneous, with any given species interacting appreciably with only some of the others, a situation commonly represented by sparse interaction networks. We study the consequences of sparse competitive interactions, in a theoretical model of a com...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2022-07, Vol.18 (7), p.e1010274 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Interactions in natural communities can be highly heterogeneous, with any given species interacting appreciably with only some of the others, a situation commonly represented by sparse interaction networks. We study the consequences of sparse competitive interactions, in a theoretical model of a community assembled from a species pool. We find that communities can be in a number of different regimes, depending on the interaction strength. When interactions are strong, the network of coexisting species breaks up into small subgraphs, while for weaker interactions these graphs are larger and more complex, eventually encompassing all species. This process is driven by the emergence of new allowed subgraphs as interaction strength decreases, leading to sharp changes in diversity and other community properties, and at weaker interactions to two distinct collective transitions: a percolation transition, and a transition between having a unique equilibrium and having multiple alternative equilibria. Understanding community structure is thus made up of two parts: first, finding which subgraphs are allowed at a given interaction strength, and secondly, a discrete problem of matching these structures over the entire community. In a shift from the focus of many previous theories, these different regimes can be traversed by modifying the interaction strength alone, without need for heterogeneity in either interaction strengths or the number of competitors per species. |
---|---|
ISSN: | 1553-7358 1553-734X 1553-7358 |
DOI: | 10.1371/journal.pcbi.1010274 |