Transcriptomic and metabonomic insights into the biocontrol mechanism of Trichoderma asperellum M45a against watermelon Fusarium wilt

Watermelon (Citrullus lanatus) is one of the most popular fruit crops. However, Fusarium wilt (FW) is a serious soil-borne disease caused by Fusarium oxysporum f. sp. niveum (FON) that severely limits the development of the watermelon industry. Trichoderma spp. is an important plant anti-pathogen bi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2022-08, Vol.17 (8), p.e0272702-e0272702
Hauptverfasser: Zhang, Yi, Xiao, Jiling, Yang, Ke, Wang, Yuqin, Tian, Yun, Liang, Zhihuai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Watermelon (Citrullus lanatus) is one of the most popular fruit crops. However, Fusarium wilt (FW) is a serious soil-borne disease caused by Fusarium oxysporum f. sp. niveum (FON) that severely limits the development of the watermelon industry. Trichoderma spp. is an important plant anti-pathogen biocontrol agent. The results of our previous study indicated that Trichoderma asperellum M45a (T. asperellum M45a) could control FW by enhancing the relative abundance of plant growth-promoting rhizobacteria (PGPR) in the rhizosphere of watermelon. However, there are few studies on its mechanism in the pathogen resistance of watermelon. Therefore, transcriptome sequencing of T. asperellum M45a-treated watermelon roots combined with metabolome sequencing of the rhizosphere soil was performed with greenhouse pot experiments. The results demonstrated that T. asperellum M45a could stably colonize roots and significantly increase the resistance-related enzymatic activities (e.g., lignin, cinnamic acid, peroxidase and peroxidase) of watermelon. Moreover, the expression of defense-related genes such as MYB and PAL in watermelon roots significantly improved with the inoculation of T. asperellum M45a. In addition, KEGG pathway analysis showed that a large number of differentially expressed genes were significantly enriched in phenylpropane metabolic pathways, which may be related to lignin and cinnamic acid synthesis, thus further inducing the immune response to resist FON. Furthermore, metabolic analysis indicated that four differential metabolic pathways were enriched in M45a-treated soil, including six upregulated compounds and one down-regulated compound. Among them, galactinol and urea were significantly positively correlated with Trichoderma. Hence, this study provides insight into the biocontrol mechanism of T. asperellum M45a to resist soil-borne diseases, which can guide its industrial application.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0272702