Analysis of mobility level of COVID-19 patients undergoing mechanical ventilation support: A single center, retrospective cohort study

Severe coronavirus disease 2019 (COVID-19) patients frequently require mechanical ventilation (MV) and undergo prolonged periods of bed rest with restriction of activities during the intensive care unit (ICU) stay. Our aim was to address the degree of mobilization in critically ill patients with COV...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2022-08, Vol.17 (8), p.e0272373-e0272373
Hauptverfasser: Nawa, Ricardo Kenji, Serpa Neto, Ary, Lazarin, Ana Carolina, da Silva, Ana Kelen, Nascimento, Camila, Midega, Thais Dias, Caserta Eid, Raquel Afonso, Corrêa, Thiago Domingos, Timenetsky, Karina Tavares
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Severe coronavirus disease 2019 (COVID-19) patients frequently require mechanical ventilation (MV) and undergo prolonged periods of bed rest with restriction of activities during the intensive care unit (ICU) stay. Our aim was to address the degree of mobilization in critically ill patients with COVID-19 undergoing to MV support. Retrospective single-center cohort study. We analyzed patients' mobility level, through the Perme ICU Mobility Score (Perme Score) of COVID-19 patients admitted to the ICU. The Perme Mobility Index (PMI) was calculated [PMI = [DELTA]Perme Score (ICU discharge-ICU admission)/ICU length of stay], and patients were categorized as "improved" (PMI > 0) or "not improved" (PMI [less than or equal to] 0). Comparisons were performed with stratification according to the use of MV support. From February 2020, to February 2021, 1,297 patients with COVID-19 were admitted to the ICU and assessed for eligibility. Out of those, 949 patients were included in the study [524 (55.2%) were classified as "improved" and 425 (44.8%) as "not improved"], and 396 (41.7%) received MV during ICU stay. The overall rate of patients out of bed and able to walk [greater than or equal to] 30 meters at ICU discharge were, respectively, 526 (63.3%) and 170 (20.5%). After adjusting for confounders, independent predictors of improvement of mobility level were frailty (OR: 0.52; 95% CI: 0.29-0.94; p = 0.03); SAPS III Score (OR: 0.75; 95% CI: 0.57-0.99; p = 0.04); SOFA Score (OR: 0.58; 95% CI: 0.43-0.78; p < 0.001); use of MV after the first hour of ICU admission (OR: 0.41; 95% CI: 0.17-0.99; p = 0.04); tracheostomy (OR: 0.54; 95% CI: 0.30-0.95; p = 0.03); use of extracorporeal membrane oxygenation (OR: 0.21; 95% CI: 0.05-0.8; p = 0.03); neuromuscular blockade (OR: 0.53; 95% CI: 0.3-0.95; p = 0.03); a higher Perme Score at admission (OR: 0.35; 95% CI: 0.28-0.43; p < 0.001); palliative care (OR: 0.05; 95% CI: 0.01-0.16; p < 0.001); and a longer ICU stay (OR: 0.79; 95% CI: 0.61-0.97; p = 0.04) were associated with a lower chance of mobility improvement, while non-invasive ventilation within the first hour of ICU admission and after the first hour of ICU admission (OR: 2.45; 95% CI: 1.59-3.81; p < 0.001) and (OR: 2.25; 95% CI: 1.56-3.26; p < 0.001), respectively; and vasopressor use (OR: 2.39; 95% CI: 1.07-5.5; p = 0.03) were associated with a higher chance of mobility improvement. The use of MV reduced mobility status in less than half of critically ill COVID-19 patients.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0272373