Drought and nutrient pollution produce multiple interactive effects in stream ecosystems

Drought and nutrient pollution can affect the dynamics of stream ecosystems in diverse ways. While the individual effects of both stressors are broadly examined in the literature, we still know relatively little about if and how these stressors interact. Here, we performed a mesocosm experiment that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2022-07, Vol.17 (7), p.e0269222-e0269222
Hauptverfasser: Fournier, Robert J, Magoulick, Daniel D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Drought and nutrient pollution can affect the dynamics of stream ecosystems in diverse ways. While the individual effects of both stressors are broadly examined in the literature, we still know relatively little about if and how these stressors interact. Here, we performed a mesocosm experiment that explores the compounded effects of seasonal drought via water withdrawals and nutrient pollution (1.0 mg/L of N and 0.1 mg/L of P) on a subset of Ozark stream community fauna and ecosystem processes. We observed biological responses to individual stressors as well as both synergistic and antagonistic stressor interactions. We found that drying negatively affected periphyton assemblages, macroinvertebrate colonization, and leaf litter decomposition in shallow habitats. However, in deep habitats, drought-based increases in fish density caused trophic cascades that released algal communities from grazing pressures; while nutrient enrichment caused bottom-up cascades that influenced periphyton variables and crayfish growth rates. Finally, the combined effects of drought and nutrient enrichment interacted antagonistically to increase survival in longear sunfish; and stressors acted synergistically on grazers causing a trophic cascade that increased periphyton variables. Because stressors can directly and indirectly impact biota—and that the same stressor pairing can act differentially on various portions of the community simultaneously—our broad understanding of individual stressors might not adequately inform our knowledge of multi-stressor systems.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0269222