Controlled precision QUBO-based algorithm to compute eigenvectors of symmetric matrices
We describe an algorithm to compute the extremal eigenvalues and corresponding eigenvectors of a symmetric matrix which is based on solving a sequence of Quadratic Binary Optimization problems. This algorithm is robust across many different classes of symmetric matrices; It can compute the eigenvect...
Gespeichert in:
Veröffentlicht in: | PloS one 2022-05, Vol.17 (5), p.e0267954-e0267954 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We describe an algorithm to compute the extremal eigenvalues and corresponding eigenvectors of a symmetric matrix which is based on solving a sequence of Quadratic Binary Optimization problems. This algorithm is robust across many different classes of symmetric matrices; It can compute the eigenvector/eigenvalue pair to essentially any arbitrary precision, and with minor modifications, can also solve the generalized eigenvalue problem. Performance is analyzed on small random matrices and selected larger matrices from practical applications. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0267954 |