Controlled precision QUBO-based algorithm to compute eigenvectors of symmetric matrices

We describe an algorithm to compute the extremal eigenvalues and corresponding eigenvectors of a symmetric matrix which is based on solving a sequence of Quadratic Binary Optimization problems. This algorithm is robust across many different classes of symmetric matrices; It can compute the eigenvect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2022-05, Vol.17 (5), p.e0267954-e0267954
Hauptverfasser: Krakoff, Benjamin, Mniszewski, Susan M, Negre, Christian F A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe an algorithm to compute the extremal eigenvalues and corresponding eigenvectors of a symmetric matrix which is based on solving a sequence of Quadratic Binary Optimization problems. This algorithm is robust across many different classes of symmetric matrices; It can compute the eigenvector/eigenvalue pair to essentially any arbitrary precision, and with minor modifications, can also solve the generalized eigenvalue problem. Performance is analyzed on small random matrices and selected larger matrices from practical applications.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0267954