Multiscale affinity maturation simulations to elicit broadly neutralizing antibodies against HIV

The design of vaccines against highly mutable pathogens, such as HIV and influenza, requires a detailed understanding of how the adaptive immune system responds to encountering multiple variant antigens (Ags). Here, we describe a multiscale model of B cell receptor (BCR) affinity maturation that emp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2022-04, Vol.18 (4), p.e1009391-e1009391
Hauptverfasser: Conti, Simone, Ovchinnikov, Victor, Faris, Jonathan G, Chakraborty, Arup K, Karplus, Martin, Sprenger, Kayla G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The design of vaccines against highly mutable pathogens, such as HIV and influenza, requires a detailed understanding of how the adaptive immune system responds to encountering multiple variant antigens (Ags). Here, we describe a multiscale model of B cell receptor (BCR) affinity maturation that employs actual BCR nucleotide sequences and treats BCR/Ag interactions in atomistic detail. We apply the model to simulate the maturation of a broadly neutralizing Ab (bnAb) against HIV. Starting from a germline precursor sequence of the VRC01 anti-HIV Ab, we simulate BCR evolution in response to different vaccination protocols and different Ags, which were previously designed by us. The simulation results provide qualitative guidelines for future vaccine design and reveal unique insights into bnAb evolution against the CD4 binding site of HIV. Our model makes possible direct comparisons of simulated BCR populations with results of deep sequencing data, which will be explored in future applications.
ISSN:1553-7358
1553-734X
1553-7358
DOI:10.1371/journal.pcbi.1009391