Erythro-VLPs: Anchoring SARS-CoV-2 spike proteins in erythrocyte liposomes

Novel therapeutic strategies are needed to control the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) pandemic. Here, we present a protocol to anchor the SARS-CoV-2 spike (S-)protein in the cytoplasmic membranes of erythrocyte liposomes. A surfactant was used to stabilize the S-protein...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2022-03, Vol.17 (3), p.e0263671-e0263671
Hauptverfasser: Himbert, Sebastian, Gastaldo, Isabella Passos, Ahmed, Rashik, Pomier, Karla Martinez, Cowbrough, Braeden, Jahagirdar, Dushyant, Ros, Samantha, Juhasz, Janos, Stöver, Harald D H, Ortega, Joaquin, Melacini, Giuseppe, Bowdish, Dawn M E, Rheinstädter, Maikel C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Novel therapeutic strategies are needed to control the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) pandemic. Here, we present a protocol to anchor the SARS-CoV-2 spike (S-)protein in the cytoplasmic membranes of erythrocyte liposomes. A surfactant was used to stabilize the S-protein's structure in the aqueous environment before insertion and to facilitate reconstitution of the S-proteins in the erythrocyte membranes. The insertion process was studied using coarse grained Molecular Dynamics (MD) simulations. Liposome formation and S-protein anchoring was studied by dynamic light scattering (DLS), ELV-protein co-sedimentation assays, fluorescent microcopy and cryo-TEM. The Erythro-VLPs (erythrocyte based virus like particles) have a well defined size of ∼200 nm and an average protein density on the outer membrane of up to ∼300 proteins/μm2. The correct insertion and functional conformation of the S-proteins was verified by dose-dependent binding to ACE-2 (angiotensin converting enzyme 2) in biolayer interferometry (BLI) assays. Seroconversion was observed in a pilot mouse trial after 14 days when administered intravenously, based on enzyme-linked immunosorbent assays (ELISA). This red blood cell based platform can open novel possibilities for therapeutics for the coronavirus disease (COVID-19) including variants, and other viruses in the future.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0263671