Anatomic development of the upper airway during the first five years of life: A three-dimensional imaging study

Normative data on the growth and development of the upper airway across the sexes is needed for the diagnosis and treatment of congenital and acquired respiratory anomalies and to gain insight on developmental changes in speech acoustics and disorders with craniofacial anomalies. The growth of the u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2022-03, Vol.17 (3), p.e0264981
Hauptverfasser: Chuang, Ying Ji, Hwang, Seong Jae, Buhr, Kevin A, Miller, Courtney A, Avey, Gregory D, Story, Brad H, Vorperian, Houri K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Normative data on the growth and development of the upper airway across the sexes is needed for the diagnosis and treatment of congenital and acquired respiratory anomalies and to gain insight on developmental changes in speech acoustics and disorders with craniofacial anomalies. The growth of the upper airway in children ages birth to 5 years, as compared to adults, was quantified using an imaging database with computed tomography studies from typically developing individuals. Methodological criteria for scan inclusion and airway measurements included: head position, histogram-based airway segmentation, anatomic landmark placement, and development of a semi-automatic centerline for data extraction. A comprehensive set of 2D and 3D supra- and sub-glottal measurements from the choanae to tracheal opening were obtained including: naso-oro-laryngo-pharynx subregion volume and length, each subregion's superior and inferior cross-sectional-area, and antero-posterior and transverse/width distances. Growth of the upper airway during the first 5 years of life was more pronounced in the vertical and transverse/lateral dimensions than in the antero-posterior dimension. By age 5 years, females have larger pharyngeal measurement than males. Prepubertal sex-differences were identified in the subglottal region. Our findings demonstrate the importance of studying the growth of the upper airway in 3D. As the lumen length increases, its shape changes, becoming increasingly elliptical during the first 5 years of life. This study also emphasizes the importance of methodological considerations for both image acquisition and data extraction, as well as the use of consistent anatomic structures in defining pharyngeal regions.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0264981