Evaluation of a parasite-density based pooled targeted amplicon deep sequencing (TADS) method for molecular surveillance of Plasmodium falciparum drug resistance genes in Haiti
Sequencing large numbers of individual samples is often needed for countrywide antimalarial drug resistance surveillance. Pooling DNA from several individual samples is an alternative cost and time saving approach for providing allele frequency (AF) estimates at a population level. Using 100 individ...
Gespeichert in:
Veröffentlicht in: | PloS one 2022-01, Vol.17 (1), p.e0262616 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | e0262616 |
container_title | PloS one |
container_volume | 17 |
creator | Louha, Swarnali Herman, Camelia Gupta, Mansi Patel, Dhruviben Kelley, Julia Oh, Je-Hoon M Guru, Janani Lemoine, Jean F Chang, Michelle A Venkatachalam, Udhayakumar Rogier, Eric Talundzic, Eldin |
description | Sequencing large numbers of individual samples is often needed for countrywide antimalarial drug resistance surveillance. Pooling DNA from several individual samples is an alternative cost and time saving approach for providing allele frequency (AF) estimates at a population level. Using 100 individual patient DNA samples of dried blood spots from a 2017 nationwide drug resistance surveillance study in Haiti, we compared codon coverage of drug resistance-conferring mutations in four Plasmodium falciparum genes (crt, dhps, dhfr, and mdr1), for the same deep sequenced samples run individually and pooled. Samples with similar real-time PCR cycle threshold (Ct) values (+/- 1.0 Ct value) were combined with ten samples per pool. The sequencing success for samples in pools were higher at a lower parasite density than the individual samples sequence method. The median codon coverage for drug resistance-associated mutations in all four genes were greater than 3-fold higher in the pooled samples than in individual samples. The overall codon coverage distribution for pooled samples was wider than the individual samples. The sample pools with < 40 parasites/μL blood showed more discordance in AF calls for dhfr and mdr1 between the individual and pooled samples. This discordance in AF estimation may be due to low amounts of parasite DNA, which could lead to variable PCR amplification efficiencies. Grouping samples with an estimated ≥ 40 parasites/μL blood prior to pooling and deep sequencing yielded the expected population level AF. Pooling DNA samples based on estimates of > 40 parasites/μL prior to deep sequencing can be used for rapid genotyping of a large number of samples for these four genes and possibly other drug resistant markers in population-based studies. As Haiti is a low malaria transmission country with very few mixed infections and continued chloroquine sensitivity, the pooled sequencing approach can be used for routine national molecular surveillance of resistant parasites. |
doi_str_mv | 10.1371/journal.pone.0262616 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2619735105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A689555343</galeid><doaj_id>oai_doaj_org_article_3cacb885c8594e969041f3dd8945847d</doaj_id><sourcerecordid>A689555343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c620t-81a6e0e9d3323d16b649def1e14190d1cb6c12c018911d2c462fd5e8ff82af353</originalsourceid><addsrcrecordid>eNptUsFu1DAQjRCIlsIfILDgUg672HHitS9Iq1JopUogUc6W155kXSV2sJ2V-ld8Ik43rbqo8mFG9ntvPG-mKN4SvCR0RT7f-DE41S0H72CJS1Yywp4Vx0TQcsFKTJ8_yo-KVzHeYFxTztjL4ojWmOKS1MfF3_Od6kaVrHfIN0ihQQUVbYKFAZfjLdqoCAYN3nc5JBVaSDlR_dBZnUkGYEAR_ozgtHUtOr1ef_31CfWQtt6gxgfUZ6YeOxVQHMMObNcpp2Gq9rNTsffGjj1qVKdtrp1TE8YWBYg2pjtgCw4isg5dKJvs6-JFxkZ4M8eT4ve38-uzi8XVj--XZ-urhc4NpwUnigEGYSgtqSFswyphoCFAKiKwIXrDNCk1JlwQYkpdsbIxNfCm4aVqaE1Pivd73aHzUc5mR5ldFitaEzwhLvcI49WNHILtVbiVXll5d-FDK1VIVncgqVZ6w3mteS0qEEzgijTUGC6qmlcrk7W-zNXGTQ9Gg0tBdQeihy_ObmXrd5KvasFYmQU-7AV8TFZGnSeot3k-DnSShFcYM5FBp3OV4PPAYpK9jRqmgYAfp-ZKjDkh9dTcx_-gT1swo1qVu7Su8flzehKVa8ZFnYUqmlHLJ1D5GOinHYLG5vsDQrUn6OBjDNA8GEGwnJb__jNyWn45L3-mvXts4gPpftvpP22LA84</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619735105</pqid></control><display><type>article</type><title>Evaluation of a parasite-density based pooled targeted amplicon deep sequencing (TADS) method for molecular surveillance of Plasmodium falciparum drug resistance genes in Haiti</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Louha, Swarnali ; Herman, Camelia ; Gupta, Mansi ; Patel, Dhruviben ; Kelley, Julia ; Oh, Je-Hoon M ; Guru, Janani ; Lemoine, Jean F ; Chang, Michelle A ; Venkatachalam, Udhayakumar ; Rogier, Eric ; Talundzic, Eldin</creator><creatorcontrib>Louha, Swarnali ; Herman, Camelia ; Gupta, Mansi ; Patel, Dhruviben ; Kelley, Julia ; Oh, Je-Hoon M ; Guru, Janani ; Lemoine, Jean F ; Chang, Michelle A ; Venkatachalam, Udhayakumar ; Rogier, Eric ; Talundzic, Eldin</creatorcontrib><description>Sequencing large numbers of individual samples is often needed for countrywide antimalarial drug resistance surveillance. Pooling DNA from several individual samples is an alternative cost and time saving approach for providing allele frequency (AF) estimates at a population level. Using 100 individual patient DNA samples of dried blood spots from a 2017 nationwide drug resistance surveillance study in Haiti, we compared codon coverage of drug resistance-conferring mutations in four Plasmodium falciparum genes (crt, dhps, dhfr, and mdr1), for the same deep sequenced samples run individually and pooled. Samples with similar real-time PCR cycle threshold (Ct) values (+/- 1.0 Ct value) were combined with ten samples per pool. The sequencing success for samples in pools were higher at a lower parasite density than the individual samples sequence method. The median codon coverage for drug resistance-associated mutations in all four genes were greater than 3-fold higher in the pooled samples than in individual samples. The overall codon coverage distribution for pooled samples was wider than the individual samples. The sample pools with < 40 parasites/μL blood showed more discordance in AF calls for dhfr and mdr1 between the individual and pooled samples. This discordance in AF estimation may be due to low amounts of parasite DNA, which could lead to variable PCR amplification efficiencies. Grouping samples with an estimated ≥ 40 parasites/μL blood prior to pooling and deep sequencing yielded the expected population level AF. Pooling DNA samples based on estimates of > 40 parasites/μL prior to deep sequencing can be used for rapid genotyping of a large number of samples for these four genes and possibly other drug resistant markers in population-based studies. As Haiti is a low malaria transmission country with very few mixed infections and continued chloroquine sensitivity, the pooled sequencing approach can be used for routine national molecular surveillance of resistant parasites.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0262616</identifier><identifier>PMID: 35030215</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Antimalarials - pharmacology ; Biology and Life Sciences ; Blood ; Causes of ; Chloroquine ; Density ; Deoxyribonucleic acid ; Diagnostic tests ; Dihydrofolate reductase ; Discordance ; Disease control ; Disease prevention ; Disease transmission ; DNA ; DNA sequencing ; Dried Blood Spot Testing - methods ; Drug resistance ; Drug Resistance - genetics ; Drug therapy ; Epidemiological Monitoring ; Estimates ; Evaluation ; Gene frequency ; Gene sequencing ; Genes ; Genetic aspects ; Genetic testing ; Genotyping ; Haiti ; Health aspects ; Health facilities ; Health surveillance ; High-Throughput Nucleotide Sequencing - methods ; High-Throughput Screening Assays - methods ; Human subjects ; Humans ; Malaria ; Malaria - epidemiology ; Malaria, Falciparum - parasitology ; MDR1 protein ; Medicine and Health Sciences ; Methods ; Mutation ; Nucleic Acid Amplification Techniques - methods ; Nucleotide sequencing ; P-Glycoprotein ; Parasite resistance ; Parasites ; Parasites - genetics ; Parasitic diseases ; Patients ; People and places ; Plasmodium falciparum ; Plasmodium falciparum - drug effects ; Plasmodium falciparum - genetics ; Plasmodium falciparum - pathogenicity ; Polymerase chain reaction ; Polymerase Chain Reaction - methods ; Pools ; Population genetics ; Population studies ; Population-based studies ; Research and analysis methods ; Sentinel health events ; Sequence Analysis, DNA ; Vector-borne diseases</subject><ispartof>PloS one, 2022-01, Vol.17 (1), p.e0262616</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c620t-81a6e0e9d3323d16b649def1e14190d1cb6c12c018911d2c462fd5e8ff82af353</citedby><cites>FETCH-LOGICAL-c620t-81a6e0e9d3323d16b649def1e14190d1cb6c12c018911d2c462fd5e8ff82af353</cites><orcidid>0000-0002-0777-8507 ; 0000000207778507</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8759662/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8759662/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35030215$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1840069$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Louha, Swarnali</creatorcontrib><creatorcontrib>Herman, Camelia</creatorcontrib><creatorcontrib>Gupta, Mansi</creatorcontrib><creatorcontrib>Patel, Dhruviben</creatorcontrib><creatorcontrib>Kelley, Julia</creatorcontrib><creatorcontrib>Oh, Je-Hoon M</creatorcontrib><creatorcontrib>Guru, Janani</creatorcontrib><creatorcontrib>Lemoine, Jean F</creatorcontrib><creatorcontrib>Chang, Michelle A</creatorcontrib><creatorcontrib>Venkatachalam, Udhayakumar</creatorcontrib><creatorcontrib>Rogier, Eric</creatorcontrib><creatorcontrib>Talundzic, Eldin</creatorcontrib><title>Evaluation of a parasite-density based pooled targeted amplicon deep sequencing (TADS) method for molecular surveillance of Plasmodium falciparum drug resistance genes in Haiti</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Sequencing large numbers of individual samples is often needed for countrywide antimalarial drug resistance surveillance. Pooling DNA from several individual samples is an alternative cost and time saving approach for providing allele frequency (AF) estimates at a population level. Using 100 individual patient DNA samples of dried blood spots from a 2017 nationwide drug resistance surveillance study in Haiti, we compared codon coverage of drug resistance-conferring mutations in four Plasmodium falciparum genes (crt, dhps, dhfr, and mdr1), for the same deep sequenced samples run individually and pooled. Samples with similar real-time PCR cycle threshold (Ct) values (+/- 1.0 Ct value) were combined with ten samples per pool. The sequencing success for samples in pools were higher at a lower parasite density than the individual samples sequence method. The median codon coverage for drug resistance-associated mutations in all four genes were greater than 3-fold higher in the pooled samples than in individual samples. The overall codon coverage distribution for pooled samples was wider than the individual samples. The sample pools with < 40 parasites/μL blood showed more discordance in AF calls for dhfr and mdr1 between the individual and pooled samples. This discordance in AF estimation may be due to low amounts of parasite DNA, which could lead to variable PCR amplification efficiencies. Grouping samples with an estimated ≥ 40 parasites/μL blood prior to pooling and deep sequencing yielded the expected population level AF. Pooling DNA samples based on estimates of > 40 parasites/μL prior to deep sequencing can be used for rapid genotyping of a large number of samples for these four genes and possibly other drug resistant markers in population-based studies. As Haiti is a low malaria transmission country with very few mixed infections and continued chloroquine sensitivity, the pooled sequencing approach can be used for routine national molecular surveillance of resistant parasites.</description><subject>Animals</subject><subject>Antimalarials - pharmacology</subject><subject>Biology and Life Sciences</subject><subject>Blood</subject><subject>Causes of</subject><subject>Chloroquine</subject><subject>Density</subject><subject>Deoxyribonucleic acid</subject><subject>Diagnostic tests</subject><subject>Dihydrofolate reductase</subject><subject>Discordance</subject><subject>Disease control</subject><subject>Disease prevention</subject><subject>Disease transmission</subject><subject>DNA</subject><subject>DNA sequencing</subject><subject>Dried Blood Spot Testing - methods</subject><subject>Drug resistance</subject><subject>Drug Resistance - genetics</subject><subject>Drug therapy</subject><subject>Epidemiological Monitoring</subject><subject>Estimates</subject><subject>Evaluation</subject><subject>Gene frequency</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic testing</subject><subject>Genotyping</subject><subject>Haiti</subject><subject>Health aspects</subject><subject>Health facilities</subject><subject>Health surveillance</subject><subject>High-Throughput Nucleotide Sequencing - methods</subject><subject>High-Throughput Screening Assays - methods</subject><subject>Human subjects</subject><subject>Humans</subject><subject>Malaria</subject><subject>Malaria - epidemiology</subject><subject>Malaria, Falciparum - parasitology</subject><subject>MDR1 protein</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Mutation</subject><subject>Nucleic Acid Amplification Techniques - methods</subject><subject>Nucleotide sequencing</subject><subject>P-Glycoprotein</subject><subject>Parasite resistance</subject><subject>Parasites</subject><subject>Parasites - genetics</subject><subject>Parasitic diseases</subject><subject>Patients</subject><subject>People and places</subject><subject>Plasmodium falciparum</subject><subject>Plasmodium falciparum - drug effects</subject><subject>Plasmodium falciparum - genetics</subject><subject>Plasmodium falciparum - pathogenicity</subject><subject>Polymerase chain reaction</subject><subject>Polymerase Chain Reaction - methods</subject><subject>Pools</subject><subject>Population genetics</subject><subject>Population studies</subject><subject>Population-based studies</subject><subject>Research and analysis methods</subject><subject>Sentinel health events</subject><subject>Sequence Analysis, DNA</subject><subject>Vector-borne diseases</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptUsFu1DAQjRCIlsIfILDgUg672HHitS9Iq1JopUogUc6W155kXSV2sJ2V-ld8Ik43rbqo8mFG9ntvPG-mKN4SvCR0RT7f-DE41S0H72CJS1Yywp4Vx0TQcsFKTJ8_yo-KVzHeYFxTztjL4ojWmOKS1MfF3_Od6kaVrHfIN0ihQQUVbYKFAZfjLdqoCAYN3nc5JBVaSDlR_dBZnUkGYEAR_ozgtHUtOr1ef_31CfWQtt6gxgfUZ6YeOxVQHMMObNcpp2Gq9rNTsffGjj1qVKdtrp1TE8YWBYg2pjtgCw4isg5dKJvs6-JFxkZ4M8eT4ve38-uzi8XVj--XZ-urhc4NpwUnigEGYSgtqSFswyphoCFAKiKwIXrDNCk1JlwQYkpdsbIxNfCm4aVqaE1Pivd73aHzUc5mR5ldFitaEzwhLvcI49WNHILtVbiVXll5d-FDK1VIVncgqVZ6w3mteS0qEEzgijTUGC6qmlcrk7W-zNXGTQ9Gg0tBdQeihy_ObmXrd5KvasFYmQU-7AV8TFZGnSeot3k-DnSShFcYM5FBp3OV4PPAYpK9jRqmgYAfp-ZKjDkh9dTcx_-gT1swo1qVu7Su8flzehKVa8ZFnYUqmlHLJ1D5GOinHYLG5vsDQrUn6OBjDNA8GEGwnJb__jNyWn45L3-mvXts4gPpftvpP22LA84</recordid><startdate>20220114</startdate><enddate>20220114</enddate><creator>Louha, Swarnali</creator><creator>Herman, Camelia</creator><creator>Gupta, Mansi</creator><creator>Patel, Dhruviben</creator><creator>Kelley, Julia</creator><creator>Oh, Je-Hoon M</creator><creator>Guru, Janani</creator><creator>Lemoine, Jean F</creator><creator>Chang, Michelle A</creator><creator>Venkatachalam, Udhayakumar</creator><creator>Rogier, Eric</creator><creator>Talundzic, Eldin</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0777-8507</orcidid><orcidid>https://orcid.org/0000000207778507</orcidid></search><sort><creationdate>20220114</creationdate><title>Evaluation of a parasite-density based pooled targeted amplicon deep sequencing (TADS) method for molecular surveillance of Plasmodium falciparum drug resistance genes in Haiti</title><author>Louha, Swarnali ; Herman, Camelia ; Gupta, Mansi ; Patel, Dhruviben ; Kelley, Julia ; Oh, Je-Hoon M ; Guru, Janani ; Lemoine, Jean F ; Chang, Michelle A ; Venkatachalam, Udhayakumar ; Rogier, Eric ; Talundzic, Eldin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c620t-81a6e0e9d3323d16b649def1e14190d1cb6c12c018911d2c462fd5e8ff82af353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>Antimalarials - pharmacology</topic><topic>Biology and Life Sciences</topic><topic>Blood</topic><topic>Causes of</topic><topic>Chloroquine</topic><topic>Density</topic><topic>Deoxyribonucleic acid</topic><topic>Diagnostic tests</topic><topic>Dihydrofolate reductase</topic><topic>Discordance</topic><topic>Disease control</topic><topic>Disease prevention</topic><topic>Disease transmission</topic><topic>DNA</topic><topic>DNA sequencing</topic><topic>Dried Blood Spot Testing - methods</topic><topic>Drug resistance</topic><topic>Drug Resistance - genetics</topic><topic>Drug therapy</topic><topic>Epidemiological Monitoring</topic><topic>Estimates</topic><topic>Evaluation</topic><topic>Gene frequency</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic testing</topic><topic>Genotyping</topic><topic>Haiti</topic><topic>Health aspects</topic><topic>Health facilities</topic><topic>Health surveillance</topic><topic>High-Throughput Nucleotide Sequencing - methods</topic><topic>High-Throughput Screening Assays - methods</topic><topic>Human subjects</topic><topic>Humans</topic><topic>Malaria</topic><topic>Malaria - epidemiology</topic><topic>Malaria, Falciparum - parasitology</topic><topic>MDR1 protein</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Mutation</topic><topic>Nucleic Acid Amplification Techniques - methods</topic><topic>Nucleotide sequencing</topic><topic>P-Glycoprotein</topic><topic>Parasite resistance</topic><topic>Parasites</topic><topic>Parasites - genetics</topic><topic>Parasitic diseases</topic><topic>Patients</topic><topic>People and places</topic><topic>Plasmodium falciparum</topic><topic>Plasmodium falciparum - drug effects</topic><topic>Plasmodium falciparum - genetics</topic><topic>Plasmodium falciparum - pathogenicity</topic><topic>Polymerase chain reaction</topic><topic>Polymerase Chain Reaction - methods</topic><topic>Pools</topic><topic>Population genetics</topic><topic>Population studies</topic><topic>Population-based studies</topic><topic>Research and analysis methods</topic><topic>Sentinel health events</topic><topic>Sequence Analysis, DNA</topic><topic>Vector-borne diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Louha, Swarnali</creatorcontrib><creatorcontrib>Herman, Camelia</creatorcontrib><creatorcontrib>Gupta, Mansi</creatorcontrib><creatorcontrib>Patel, Dhruviben</creatorcontrib><creatorcontrib>Kelley, Julia</creatorcontrib><creatorcontrib>Oh, Je-Hoon M</creatorcontrib><creatorcontrib>Guru, Janani</creatorcontrib><creatorcontrib>Lemoine, Jean F</creatorcontrib><creatorcontrib>Chang, Michelle A</creatorcontrib><creatorcontrib>Venkatachalam, Udhayakumar</creatorcontrib><creatorcontrib>Rogier, Eric</creatorcontrib><creatorcontrib>Talundzic, Eldin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Louha, Swarnali</au><au>Herman, Camelia</au><au>Gupta, Mansi</au><au>Patel, Dhruviben</au><au>Kelley, Julia</au><au>Oh, Je-Hoon M</au><au>Guru, Janani</au><au>Lemoine, Jean F</au><au>Chang, Michelle A</au><au>Venkatachalam, Udhayakumar</au><au>Rogier, Eric</au><au>Talundzic, Eldin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of a parasite-density based pooled targeted amplicon deep sequencing (TADS) method for molecular surveillance of Plasmodium falciparum drug resistance genes in Haiti</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2022-01-14</date><risdate>2022</risdate><volume>17</volume><issue>1</issue><spage>e0262616</spage><pages>e0262616-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Sequencing large numbers of individual samples is often needed for countrywide antimalarial drug resistance surveillance. Pooling DNA from several individual samples is an alternative cost and time saving approach for providing allele frequency (AF) estimates at a population level. Using 100 individual patient DNA samples of dried blood spots from a 2017 nationwide drug resistance surveillance study in Haiti, we compared codon coverage of drug resistance-conferring mutations in four Plasmodium falciparum genes (crt, dhps, dhfr, and mdr1), for the same deep sequenced samples run individually and pooled. Samples with similar real-time PCR cycle threshold (Ct) values (+/- 1.0 Ct value) were combined with ten samples per pool. The sequencing success for samples in pools were higher at a lower parasite density than the individual samples sequence method. The median codon coverage for drug resistance-associated mutations in all four genes were greater than 3-fold higher in the pooled samples than in individual samples. The overall codon coverage distribution for pooled samples was wider than the individual samples. The sample pools with < 40 parasites/μL blood showed more discordance in AF calls for dhfr and mdr1 between the individual and pooled samples. This discordance in AF estimation may be due to low amounts of parasite DNA, which could lead to variable PCR amplification efficiencies. Grouping samples with an estimated ≥ 40 parasites/μL blood prior to pooling and deep sequencing yielded the expected population level AF. Pooling DNA samples based on estimates of > 40 parasites/μL prior to deep sequencing can be used for rapid genotyping of a large number of samples for these four genes and possibly other drug resistant markers in population-based studies. As Haiti is a low malaria transmission country with very few mixed infections and continued chloroquine sensitivity, the pooled sequencing approach can be used for routine national molecular surveillance of resistant parasites.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>35030215</pmid><doi>10.1371/journal.pone.0262616</doi><orcidid>https://orcid.org/0000-0002-0777-8507</orcidid><orcidid>https://orcid.org/0000000207778507</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2022-01, Vol.17 (1), p.e0262616 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2619735105 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Animals Antimalarials - pharmacology Biology and Life Sciences Blood Causes of Chloroquine Density Deoxyribonucleic acid Diagnostic tests Dihydrofolate reductase Discordance Disease control Disease prevention Disease transmission DNA DNA sequencing Dried Blood Spot Testing - methods Drug resistance Drug Resistance - genetics Drug therapy Epidemiological Monitoring Estimates Evaluation Gene frequency Gene sequencing Genes Genetic aspects Genetic testing Genotyping Haiti Health aspects Health facilities Health surveillance High-Throughput Nucleotide Sequencing - methods High-Throughput Screening Assays - methods Human subjects Humans Malaria Malaria - epidemiology Malaria, Falciparum - parasitology MDR1 protein Medicine and Health Sciences Methods Mutation Nucleic Acid Amplification Techniques - methods Nucleotide sequencing P-Glycoprotein Parasite resistance Parasites Parasites - genetics Parasitic diseases Patients People and places Plasmodium falciparum Plasmodium falciparum - drug effects Plasmodium falciparum - genetics Plasmodium falciparum - pathogenicity Polymerase chain reaction Polymerase Chain Reaction - methods Pools Population genetics Population studies Population-based studies Research and analysis methods Sentinel health events Sequence Analysis, DNA Vector-borne diseases |
title | Evaluation of a parasite-density based pooled targeted amplicon deep sequencing (TADS) method for molecular surveillance of Plasmodium falciparum drug resistance genes in Haiti |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A37%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20a%20parasite-density%20based%20pooled%20targeted%20amplicon%20deep%20sequencing%20(TADS)%20method%20for%20molecular%20surveillance%20of%20Plasmodium%20falciparum%20drug%20resistance%20genes%20in%20Haiti&rft.jtitle=PloS%20one&rft.au=Louha,%20Swarnali&rft.date=2022-01-14&rft.volume=17&rft.issue=1&rft.spage=e0262616&rft.pages=e0262616-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0262616&rft_dat=%3Cgale_plos_%3EA689555343%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2619735105&rft_id=info:pmid/35030215&rft_galeid=A689555343&rft_doaj_id=oai_doaj_org_article_3cacb885c8594e969041f3dd8945847d&rfr_iscdi=true |