Evaluation of a parasite-density based pooled targeted amplicon deep sequencing (TADS) method for molecular surveillance of Plasmodium falciparum drug resistance genes in Haiti

Sequencing large numbers of individual samples is often needed for countrywide antimalarial drug resistance surveillance. Pooling DNA from several individual samples is an alternative cost and time saving approach for providing allele frequency (AF) estimates at a population level. Using 100 individ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2022-01, Vol.17 (1), p.e0262616
Hauptverfasser: Louha, Swarnali, Herman, Camelia, Gupta, Mansi, Patel, Dhruviben, Kelley, Julia, Oh, Je-Hoon M, Guru, Janani, Lemoine, Jean F, Chang, Michelle A, Venkatachalam, Udhayakumar, Rogier, Eric, Talundzic, Eldin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page e0262616
container_title PloS one
container_volume 17
creator Louha, Swarnali
Herman, Camelia
Gupta, Mansi
Patel, Dhruviben
Kelley, Julia
Oh, Je-Hoon M
Guru, Janani
Lemoine, Jean F
Chang, Michelle A
Venkatachalam, Udhayakumar
Rogier, Eric
Talundzic, Eldin
description Sequencing large numbers of individual samples is often needed for countrywide antimalarial drug resistance surveillance. Pooling DNA from several individual samples is an alternative cost and time saving approach for providing allele frequency (AF) estimates at a population level. Using 100 individual patient DNA samples of dried blood spots from a 2017 nationwide drug resistance surveillance study in Haiti, we compared codon coverage of drug resistance-conferring mutations in four Plasmodium falciparum genes (crt, dhps, dhfr, and mdr1), for the same deep sequenced samples run individually and pooled. Samples with similar real-time PCR cycle threshold (Ct) values (+/- 1.0 Ct value) were combined with ten samples per pool. The sequencing success for samples in pools were higher at a lower parasite density than the individual samples sequence method. The median codon coverage for drug resistance-associated mutations in all four genes were greater than 3-fold higher in the pooled samples than in individual samples. The overall codon coverage distribution for pooled samples was wider than the individual samples. The sample pools with < 40 parasites/μL blood showed more discordance in AF calls for dhfr and mdr1 between the individual and pooled samples. This discordance in AF estimation may be due to low amounts of parasite DNA, which could lead to variable PCR amplification efficiencies. Grouping samples with an estimated ≥ 40 parasites/μL blood prior to pooling and deep sequencing yielded the expected population level AF. Pooling DNA samples based on estimates of > 40 parasites/μL prior to deep sequencing can be used for rapid genotyping of a large number of samples for these four genes and possibly other drug resistant markers in population-based studies. As Haiti is a low malaria transmission country with very few mixed infections and continued chloroquine sensitivity, the pooled sequencing approach can be used for routine national molecular surveillance of resistant parasites.
doi_str_mv 10.1371/journal.pone.0262616
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2619735105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A689555343</galeid><doaj_id>oai_doaj_org_article_3cacb885c8594e969041f3dd8945847d</doaj_id><sourcerecordid>A689555343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c620t-81a6e0e9d3323d16b649def1e14190d1cb6c12c018911d2c462fd5e8ff82af353</originalsourceid><addsrcrecordid>eNptUsFu1DAQjRCIlsIfILDgUg672HHitS9Iq1JopUogUc6W155kXSV2sJ2V-ld8Ik43rbqo8mFG9ntvPG-mKN4SvCR0RT7f-DE41S0H72CJS1Yywp4Vx0TQcsFKTJ8_yo-KVzHeYFxTztjL4ojWmOKS1MfF3_Od6kaVrHfIN0ihQQUVbYKFAZfjLdqoCAYN3nc5JBVaSDlR_dBZnUkGYEAR_ozgtHUtOr1ef_31CfWQtt6gxgfUZ6YeOxVQHMMObNcpp2Gq9rNTsffGjj1qVKdtrp1TE8YWBYg2pjtgCw4isg5dKJvs6-JFxkZ4M8eT4ve38-uzi8XVj--XZ-urhc4NpwUnigEGYSgtqSFswyphoCFAKiKwIXrDNCk1JlwQYkpdsbIxNfCm4aVqaE1Pivd73aHzUc5mR5ldFitaEzwhLvcI49WNHILtVbiVXll5d-FDK1VIVncgqVZ6w3mteS0qEEzgijTUGC6qmlcrk7W-zNXGTQ9Gg0tBdQeihy_ObmXrd5KvasFYmQU-7AV8TFZGnSeot3k-DnSShFcYM5FBp3OV4PPAYpK9jRqmgYAfp-ZKjDkh9dTcx_-gT1swo1qVu7Su8flzehKVa8ZFnYUqmlHLJ1D5GOinHYLG5vsDQrUn6OBjDNA8GEGwnJb__jNyWn45L3-mvXts4gPpftvpP22LA84</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619735105</pqid></control><display><type>article</type><title>Evaluation of a parasite-density based pooled targeted amplicon deep sequencing (TADS) method for molecular surveillance of Plasmodium falciparum drug resistance genes in Haiti</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Louha, Swarnali ; Herman, Camelia ; Gupta, Mansi ; Patel, Dhruviben ; Kelley, Julia ; Oh, Je-Hoon M ; Guru, Janani ; Lemoine, Jean F ; Chang, Michelle A ; Venkatachalam, Udhayakumar ; Rogier, Eric ; Talundzic, Eldin</creator><creatorcontrib>Louha, Swarnali ; Herman, Camelia ; Gupta, Mansi ; Patel, Dhruviben ; Kelley, Julia ; Oh, Je-Hoon M ; Guru, Janani ; Lemoine, Jean F ; Chang, Michelle A ; Venkatachalam, Udhayakumar ; Rogier, Eric ; Talundzic, Eldin</creatorcontrib><description>Sequencing large numbers of individual samples is often needed for countrywide antimalarial drug resistance surveillance. Pooling DNA from several individual samples is an alternative cost and time saving approach for providing allele frequency (AF) estimates at a population level. Using 100 individual patient DNA samples of dried blood spots from a 2017 nationwide drug resistance surveillance study in Haiti, we compared codon coverage of drug resistance-conferring mutations in four Plasmodium falciparum genes (crt, dhps, dhfr, and mdr1), for the same deep sequenced samples run individually and pooled. Samples with similar real-time PCR cycle threshold (Ct) values (+/- 1.0 Ct value) were combined with ten samples per pool. The sequencing success for samples in pools were higher at a lower parasite density than the individual samples sequence method. The median codon coverage for drug resistance-associated mutations in all four genes were greater than 3-fold higher in the pooled samples than in individual samples. The overall codon coverage distribution for pooled samples was wider than the individual samples. The sample pools with &lt; 40 parasites/μL blood showed more discordance in AF calls for dhfr and mdr1 between the individual and pooled samples. This discordance in AF estimation may be due to low amounts of parasite DNA, which could lead to variable PCR amplification efficiencies. Grouping samples with an estimated ≥ 40 parasites/μL blood prior to pooling and deep sequencing yielded the expected population level AF. Pooling DNA samples based on estimates of &gt; 40 parasites/μL prior to deep sequencing can be used for rapid genotyping of a large number of samples for these four genes and possibly other drug resistant markers in population-based studies. As Haiti is a low malaria transmission country with very few mixed infections and continued chloroquine sensitivity, the pooled sequencing approach can be used for routine national molecular surveillance of resistant parasites.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0262616</identifier><identifier>PMID: 35030215</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Antimalarials - pharmacology ; Biology and Life Sciences ; Blood ; Causes of ; Chloroquine ; Density ; Deoxyribonucleic acid ; Diagnostic tests ; Dihydrofolate reductase ; Discordance ; Disease control ; Disease prevention ; Disease transmission ; DNA ; DNA sequencing ; Dried Blood Spot Testing - methods ; Drug resistance ; Drug Resistance - genetics ; Drug therapy ; Epidemiological Monitoring ; Estimates ; Evaluation ; Gene frequency ; Gene sequencing ; Genes ; Genetic aspects ; Genetic testing ; Genotyping ; Haiti ; Health aspects ; Health facilities ; Health surveillance ; High-Throughput Nucleotide Sequencing - methods ; High-Throughput Screening Assays - methods ; Human subjects ; Humans ; Malaria ; Malaria - epidemiology ; Malaria, Falciparum - parasitology ; MDR1 protein ; Medicine and Health Sciences ; Methods ; Mutation ; Nucleic Acid Amplification Techniques - methods ; Nucleotide sequencing ; P-Glycoprotein ; Parasite resistance ; Parasites ; Parasites - genetics ; Parasitic diseases ; Patients ; People and places ; Plasmodium falciparum ; Plasmodium falciparum - drug effects ; Plasmodium falciparum - genetics ; Plasmodium falciparum - pathogenicity ; Polymerase chain reaction ; Polymerase Chain Reaction - methods ; Pools ; Population genetics ; Population studies ; Population-based studies ; Research and analysis methods ; Sentinel health events ; Sequence Analysis, DNA ; Vector-borne diseases</subject><ispartof>PloS one, 2022-01, Vol.17 (1), p.e0262616</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c620t-81a6e0e9d3323d16b649def1e14190d1cb6c12c018911d2c462fd5e8ff82af353</citedby><cites>FETCH-LOGICAL-c620t-81a6e0e9d3323d16b649def1e14190d1cb6c12c018911d2c462fd5e8ff82af353</cites><orcidid>0000-0002-0777-8507 ; 0000000207778507</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8759662/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8759662/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35030215$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1840069$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Louha, Swarnali</creatorcontrib><creatorcontrib>Herman, Camelia</creatorcontrib><creatorcontrib>Gupta, Mansi</creatorcontrib><creatorcontrib>Patel, Dhruviben</creatorcontrib><creatorcontrib>Kelley, Julia</creatorcontrib><creatorcontrib>Oh, Je-Hoon M</creatorcontrib><creatorcontrib>Guru, Janani</creatorcontrib><creatorcontrib>Lemoine, Jean F</creatorcontrib><creatorcontrib>Chang, Michelle A</creatorcontrib><creatorcontrib>Venkatachalam, Udhayakumar</creatorcontrib><creatorcontrib>Rogier, Eric</creatorcontrib><creatorcontrib>Talundzic, Eldin</creatorcontrib><title>Evaluation of a parasite-density based pooled targeted amplicon deep sequencing (TADS) method for molecular surveillance of Plasmodium falciparum drug resistance genes in Haiti</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Sequencing large numbers of individual samples is often needed for countrywide antimalarial drug resistance surveillance. Pooling DNA from several individual samples is an alternative cost and time saving approach for providing allele frequency (AF) estimates at a population level. Using 100 individual patient DNA samples of dried blood spots from a 2017 nationwide drug resistance surveillance study in Haiti, we compared codon coverage of drug resistance-conferring mutations in four Plasmodium falciparum genes (crt, dhps, dhfr, and mdr1), for the same deep sequenced samples run individually and pooled. Samples with similar real-time PCR cycle threshold (Ct) values (+/- 1.0 Ct value) were combined with ten samples per pool. The sequencing success for samples in pools were higher at a lower parasite density than the individual samples sequence method. The median codon coverage for drug resistance-associated mutations in all four genes were greater than 3-fold higher in the pooled samples than in individual samples. The overall codon coverage distribution for pooled samples was wider than the individual samples. The sample pools with &lt; 40 parasites/μL blood showed more discordance in AF calls for dhfr and mdr1 between the individual and pooled samples. This discordance in AF estimation may be due to low amounts of parasite DNA, which could lead to variable PCR amplification efficiencies. Grouping samples with an estimated ≥ 40 parasites/μL blood prior to pooling and deep sequencing yielded the expected population level AF. Pooling DNA samples based on estimates of &gt; 40 parasites/μL prior to deep sequencing can be used for rapid genotyping of a large number of samples for these four genes and possibly other drug resistant markers in population-based studies. As Haiti is a low malaria transmission country with very few mixed infections and continued chloroquine sensitivity, the pooled sequencing approach can be used for routine national molecular surveillance of resistant parasites.</description><subject>Animals</subject><subject>Antimalarials - pharmacology</subject><subject>Biology and Life Sciences</subject><subject>Blood</subject><subject>Causes of</subject><subject>Chloroquine</subject><subject>Density</subject><subject>Deoxyribonucleic acid</subject><subject>Diagnostic tests</subject><subject>Dihydrofolate reductase</subject><subject>Discordance</subject><subject>Disease control</subject><subject>Disease prevention</subject><subject>Disease transmission</subject><subject>DNA</subject><subject>DNA sequencing</subject><subject>Dried Blood Spot Testing - methods</subject><subject>Drug resistance</subject><subject>Drug Resistance - genetics</subject><subject>Drug therapy</subject><subject>Epidemiological Monitoring</subject><subject>Estimates</subject><subject>Evaluation</subject><subject>Gene frequency</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic testing</subject><subject>Genotyping</subject><subject>Haiti</subject><subject>Health aspects</subject><subject>Health facilities</subject><subject>Health surveillance</subject><subject>High-Throughput Nucleotide Sequencing - methods</subject><subject>High-Throughput Screening Assays - methods</subject><subject>Human subjects</subject><subject>Humans</subject><subject>Malaria</subject><subject>Malaria - epidemiology</subject><subject>Malaria, Falciparum - parasitology</subject><subject>MDR1 protein</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Mutation</subject><subject>Nucleic Acid Amplification Techniques - methods</subject><subject>Nucleotide sequencing</subject><subject>P-Glycoprotein</subject><subject>Parasite resistance</subject><subject>Parasites</subject><subject>Parasites - genetics</subject><subject>Parasitic diseases</subject><subject>Patients</subject><subject>People and places</subject><subject>Plasmodium falciparum</subject><subject>Plasmodium falciparum - drug effects</subject><subject>Plasmodium falciparum - genetics</subject><subject>Plasmodium falciparum - pathogenicity</subject><subject>Polymerase chain reaction</subject><subject>Polymerase Chain Reaction - methods</subject><subject>Pools</subject><subject>Population genetics</subject><subject>Population studies</subject><subject>Population-based studies</subject><subject>Research and analysis methods</subject><subject>Sentinel health events</subject><subject>Sequence Analysis, DNA</subject><subject>Vector-borne diseases</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptUsFu1DAQjRCIlsIfILDgUg672HHitS9Iq1JopUogUc6W155kXSV2sJ2V-ld8Ik43rbqo8mFG9ntvPG-mKN4SvCR0RT7f-DE41S0H72CJS1Yywp4Vx0TQcsFKTJ8_yo-KVzHeYFxTztjL4ojWmOKS1MfF3_Od6kaVrHfIN0ihQQUVbYKFAZfjLdqoCAYN3nc5JBVaSDlR_dBZnUkGYEAR_ozgtHUtOr1ef_31CfWQtt6gxgfUZ6YeOxVQHMMObNcpp2Gq9rNTsffGjj1qVKdtrp1TE8YWBYg2pjtgCw4isg5dKJvs6-JFxkZ4M8eT4ve38-uzi8XVj--XZ-urhc4NpwUnigEGYSgtqSFswyphoCFAKiKwIXrDNCk1JlwQYkpdsbIxNfCm4aVqaE1Pivd73aHzUc5mR5ldFitaEzwhLvcI49WNHILtVbiVXll5d-FDK1VIVncgqVZ6w3mteS0qEEzgijTUGC6qmlcrk7W-zNXGTQ9Gg0tBdQeihy_ObmXrd5KvasFYmQU-7AV8TFZGnSeot3k-DnSShFcYM5FBp3OV4PPAYpK9jRqmgYAfp-ZKjDkh9dTcx_-gT1swo1qVu7Su8flzehKVa8ZFnYUqmlHLJ1D5GOinHYLG5vsDQrUn6OBjDNA8GEGwnJb__jNyWn45L3-mvXts4gPpftvpP22LA84</recordid><startdate>20220114</startdate><enddate>20220114</enddate><creator>Louha, Swarnali</creator><creator>Herman, Camelia</creator><creator>Gupta, Mansi</creator><creator>Patel, Dhruviben</creator><creator>Kelley, Julia</creator><creator>Oh, Je-Hoon M</creator><creator>Guru, Janani</creator><creator>Lemoine, Jean F</creator><creator>Chang, Michelle A</creator><creator>Venkatachalam, Udhayakumar</creator><creator>Rogier, Eric</creator><creator>Talundzic, Eldin</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0777-8507</orcidid><orcidid>https://orcid.org/0000000207778507</orcidid></search><sort><creationdate>20220114</creationdate><title>Evaluation of a parasite-density based pooled targeted amplicon deep sequencing (TADS) method for molecular surveillance of Plasmodium falciparum drug resistance genes in Haiti</title><author>Louha, Swarnali ; Herman, Camelia ; Gupta, Mansi ; Patel, Dhruviben ; Kelley, Julia ; Oh, Je-Hoon M ; Guru, Janani ; Lemoine, Jean F ; Chang, Michelle A ; Venkatachalam, Udhayakumar ; Rogier, Eric ; Talundzic, Eldin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c620t-81a6e0e9d3323d16b649def1e14190d1cb6c12c018911d2c462fd5e8ff82af353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>Antimalarials - pharmacology</topic><topic>Biology and Life Sciences</topic><topic>Blood</topic><topic>Causes of</topic><topic>Chloroquine</topic><topic>Density</topic><topic>Deoxyribonucleic acid</topic><topic>Diagnostic tests</topic><topic>Dihydrofolate reductase</topic><topic>Discordance</topic><topic>Disease control</topic><topic>Disease prevention</topic><topic>Disease transmission</topic><topic>DNA</topic><topic>DNA sequencing</topic><topic>Dried Blood Spot Testing - methods</topic><topic>Drug resistance</topic><topic>Drug Resistance - genetics</topic><topic>Drug therapy</topic><topic>Epidemiological Monitoring</topic><topic>Estimates</topic><topic>Evaluation</topic><topic>Gene frequency</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic testing</topic><topic>Genotyping</topic><topic>Haiti</topic><topic>Health aspects</topic><topic>Health facilities</topic><topic>Health surveillance</topic><topic>High-Throughput Nucleotide Sequencing - methods</topic><topic>High-Throughput Screening Assays - methods</topic><topic>Human subjects</topic><topic>Humans</topic><topic>Malaria</topic><topic>Malaria - epidemiology</topic><topic>Malaria, Falciparum - parasitology</topic><topic>MDR1 protein</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Mutation</topic><topic>Nucleic Acid Amplification Techniques - methods</topic><topic>Nucleotide sequencing</topic><topic>P-Glycoprotein</topic><topic>Parasite resistance</topic><topic>Parasites</topic><topic>Parasites - genetics</topic><topic>Parasitic diseases</topic><topic>Patients</topic><topic>People and places</topic><topic>Plasmodium falciparum</topic><topic>Plasmodium falciparum - drug effects</topic><topic>Plasmodium falciparum - genetics</topic><topic>Plasmodium falciparum - pathogenicity</topic><topic>Polymerase chain reaction</topic><topic>Polymerase Chain Reaction - methods</topic><topic>Pools</topic><topic>Population genetics</topic><topic>Population studies</topic><topic>Population-based studies</topic><topic>Research and analysis methods</topic><topic>Sentinel health events</topic><topic>Sequence Analysis, DNA</topic><topic>Vector-borne diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Louha, Swarnali</creatorcontrib><creatorcontrib>Herman, Camelia</creatorcontrib><creatorcontrib>Gupta, Mansi</creatorcontrib><creatorcontrib>Patel, Dhruviben</creatorcontrib><creatorcontrib>Kelley, Julia</creatorcontrib><creatorcontrib>Oh, Je-Hoon M</creatorcontrib><creatorcontrib>Guru, Janani</creatorcontrib><creatorcontrib>Lemoine, Jean F</creatorcontrib><creatorcontrib>Chang, Michelle A</creatorcontrib><creatorcontrib>Venkatachalam, Udhayakumar</creatorcontrib><creatorcontrib>Rogier, Eric</creatorcontrib><creatorcontrib>Talundzic, Eldin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Louha, Swarnali</au><au>Herman, Camelia</au><au>Gupta, Mansi</au><au>Patel, Dhruviben</au><au>Kelley, Julia</au><au>Oh, Je-Hoon M</au><au>Guru, Janani</au><au>Lemoine, Jean F</au><au>Chang, Michelle A</au><au>Venkatachalam, Udhayakumar</au><au>Rogier, Eric</au><au>Talundzic, Eldin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of a parasite-density based pooled targeted amplicon deep sequencing (TADS) method for molecular surveillance of Plasmodium falciparum drug resistance genes in Haiti</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2022-01-14</date><risdate>2022</risdate><volume>17</volume><issue>1</issue><spage>e0262616</spage><pages>e0262616-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Sequencing large numbers of individual samples is often needed for countrywide antimalarial drug resistance surveillance. Pooling DNA from several individual samples is an alternative cost and time saving approach for providing allele frequency (AF) estimates at a population level. Using 100 individual patient DNA samples of dried blood spots from a 2017 nationwide drug resistance surveillance study in Haiti, we compared codon coverage of drug resistance-conferring mutations in four Plasmodium falciparum genes (crt, dhps, dhfr, and mdr1), for the same deep sequenced samples run individually and pooled. Samples with similar real-time PCR cycle threshold (Ct) values (+/- 1.0 Ct value) were combined with ten samples per pool. The sequencing success for samples in pools were higher at a lower parasite density than the individual samples sequence method. The median codon coverage for drug resistance-associated mutations in all four genes were greater than 3-fold higher in the pooled samples than in individual samples. The overall codon coverage distribution for pooled samples was wider than the individual samples. The sample pools with &lt; 40 parasites/μL blood showed more discordance in AF calls for dhfr and mdr1 between the individual and pooled samples. This discordance in AF estimation may be due to low amounts of parasite DNA, which could lead to variable PCR amplification efficiencies. Grouping samples with an estimated ≥ 40 parasites/μL blood prior to pooling and deep sequencing yielded the expected population level AF. Pooling DNA samples based on estimates of &gt; 40 parasites/μL prior to deep sequencing can be used for rapid genotyping of a large number of samples for these four genes and possibly other drug resistant markers in population-based studies. As Haiti is a low malaria transmission country with very few mixed infections and continued chloroquine sensitivity, the pooled sequencing approach can be used for routine national molecular surveillance of resistant parasites.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>35030215</pmid><doi>10.1371/journal.pone.0262616</doi><orcidid>https://orcid.org/0000-0002-0777-8507</orcidid><orcidid>https://orcid.org/0000000207778507</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2022-01, Vol.17 (1), p.e0262616
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2619735105
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Animals
Antimalarials - pharmacology
Biology and Life Sciences
Blood
Causes of
Chloroquine
Density
Deoxyribonucleic acid
Diagnostic tests
Dihydrofolate reductase
Discordance
Disease control
Disease prevention
Disease transmission
DNA
DNA sequencing
Dried Blood Spot Testing - methods
Drug resistance
Drug Resistance - genetics
Drug therapy
Epidemiological Monitoring
Estimates
Evaluation
Gene frequency
Gene sequencing
Genes
Genetic aspects
Genetic testing
Genotyping
Haiti
Health aspects
Health facilities
Health surveillance
High-Throughput Nucleotide Sequencing - methods
High-Throughput Screening Assays - methods
Human subjects
Humans
Malaria
Malaria - epidemiology
Malaria, Falciparum - parasitology
MDR1 protein
Medicine and Health Sciences
Methods
Mutation
Nucleic Acid Amplification Techniques - methods
Nucleotide sequencing
P-Glycoprotein
Parasite resistance
Parasites
Parasites - genetics
Parasitic diseases
Patients
People and places
Plasmodium falciparum
Plasmodium falciparum - drug effects
Plasmodium falciparum - genetics
Plasmodium falciparum - pathogenicity
Polymerase chain reaction
Polymerase Chain Reaction - methods
Pools
Population genetics
Population studies
Population-based studies
Research and analysis methods
Sentinel health events
Sequence Analysis, DNA
Vector-borne diseases
title Evaluation of a parasite-density based pooled targeted amplicon deep sequencing (TADS) method for molecular surveillance of Plasmodium falciparum drug resistance genes in Haiti
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A37%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20a%20parasite-density%20based%20pooled%20targeted%20amplicon%20deep%20sequencing%20(TADS)%20method%20for%20molecular%20surveillance%20of%20Plasmodium%20falciparum%20drug%20resistance%20genes%20in%20Haiti&rft.jtitle=PloS%20one&rft.au=Louha,%20Swarnali&rft.date=2022-01-14&rft.volume=17&rft.issue=1&rft.spage=e0262616&rft.pages=e0262616-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0262616&rft_dat=%3Cgale_plos_%3EA689555343%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2619735105&rft_id=info:pmid/35030215&rft_galeid=A689555343&rft_doaj_id=oai_doaj_org_article_3cacb885c8594e969041f3dd8945847d&rfr_iscdi=true