Evaluation of a parasite-density based pooled targeted amplicon deep sequencing (TADS) method for molecular surveillance of Plasmodium falciparum drug resistance genes in Haiti

Sequencing large numbers of individual samples is often needed for countrywide antimalarial drug resistance surveillance. Pooling DNA from several individual samples is an alternative cost and time saving approach for providing allele frequency (AF) estimates at a population level. Using 100 individ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2022-01, Vol.17 (1), p.e0262616
Hauptverfasser: Louha, Swarnali, Herman, Camelia, Gupta, Mansi, Patel, Dhruviben, Kelley, Julia, Oh, Je-Hoon M, Guru, Janani, Lemoine, Jean F, Chang, Michelle A, Venkatachalam, Udhayakumar, Rogier, Eric, Talundzic, Eldin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sequencing large numbers of individual samples is often needed for countrywide antimalarial drug resistance surveillance. Pooling DNA from several individual samples is an alternative cost and time saving approach for providing allele frequency (AF) estimates at a population level. Using 100 individual patient DNA samples of dried blood spots from a 2017 nationwide drug resistance surveillance study in Haiti, we compared codon coverage of drug resistance-conferring mutations in four Plasmodium falciparum genes (crt, dhps, dhfr, and mdr1), for the same deep sequenced samples run individually and pooled. Samples with similar real-time PCR cycle threshold (Ct) values (+/- 1.0 Ct value) were combined with ten samples per pool. The sequencing success for samples in pools were higher at a lower parasite density than the individual samples sequence method. The median codon coverage for drug resistance-associated mutations in all four genes were greater than 3-fold higher in the pooled samples than in individual samples. The overall codon coverage distribution for pooled samples was wider than the individual samples. The sample pools with < 40 parasites/μL blood showed more discordance in AF calls for dhfr and mdr1 between the individual and pooled samples. This discordance in AF estimation may be due to low amounts of parasite DNA, which could lead to variable PCR amplification efficiencies. Grouping samples with an estimated ≥ 40 parasites/μL blood prior to pooling and deep sequencing yielded the expected population level AF. Pooling DNA samples based on estimates of > 40 parasites/μL prior to deep sequencing can be used for rapid genotyping of a large number of samples for these four genes and possibly other drug resistant markers in population-based studies. As Haiti is a low malaria transmission country with very few mixed infections and continued chloroquine sensitivity, the pooled sequencing approach can be used for routine national molecular surveillance of resistant parasites.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0262616