An approximation of one-dimensional nonlinear Kortweg de Vries equation of order nine

This research presents the approximate solution of nonlinear Korteweg-de Vries equation of order nine by a hybrid staggered one-dimensional Haar wavelet collocation method. In literature, the underlying equation is derived by generalizing the bilinear form of the standard nonlinear KdV equation. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2022-01, Vol.17 (1), p.e0262157-e0262157
Hauptverfasser: Saleem, Sidra, Hussain, Malik Zawwar, Aziz, Imran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This research presents the approximate solution of nonlinear Korteweg-de Vries equation of order nine by a hybrid staggered one-dimensional Haar wavelet collocation method. In literature, the underlying equation is derived by generalizing the bilinear form of the standard nonlinear KdV equation. The highest order derivative is approximated by Haar series, whereas the lower order derivatives are attained by integration formula introduced by Chen and Hsiao in 1997. The findings are shown in the form of tables and a figure, demonstrating the proposed technique's convergence, robustness, and ease of application in a small number of collocation points.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0262157