Relationships between in vivo surface and ex vivo electrical impedance myography measurements in three different neuromuscular disorder mouse models

Electrical impedance myography (EIM) using surface techniques has shown promise as a means of diagnosing and tracking disorders affecting muscle and assessing treatment efficacy. However, the relationship between such surface-obtained impedance values and pure muscle impedance values has not been es...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2021-10, Vol.16 (10), p.e0259071-e0259071
Hauptverfasser: Pandeya, Sarbesh R, Nagy, Janice A, Riveros, Daniela, Semple, Carson, Taylor, Rebecca S, Sanchez, Benjamin, Rutkove, Seward B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electrical impedance myography (EIM) using surface techniques has shown promise as a means of diagnosing and tracking disorders affecting muscle and assessing treatment efficacy. However, the relationship between such surface-obtained impedance values and pure muscle impedance values has not been established. Here we studied three groups of diseased and wild-type (WT) animals, including a Duchenne muscular dystrophy model (the D2-mdx mouse), an amyotrophic lateral sclerosis (ALS) model (the SOD1 G93A mouse), and a model of fat-related atrophy (the db/db diabetic obese mouse), performing hind limb measurements using a standard surface array and ex vivo measurements on freshly excised gastrocnemius muscle. A total of 101 animals (23 D2-mdx, 43 ALS mice, 12 db/db mice, and corresponding 30 WT mice) were studied with EIM across a frequency range of 8 kHz to 1 MHz. For both D2-mdx and ALS models, moderate strength correlations (Spearman rho values generally ranging from 0.3-0.7, depending on the impedance parameter (i.e., resistance, reactance and phase) were obtained. In these groups of animals, there was an offset in frequency with impedance values obtained at higher surface frequencies correlating more strongly to impedance values obtained at lower ex vivo frequencies. For the db/db model, correlations were comparatively weaker and strongest at very high and very low frequencies. When combining impedance data from all three disease models together, moderate correlations persisted (with maximal Spearman rho values of 0.45). These data support that surface EIM data reflect ex vivo muscle tissue EIM values to a moderate degree across several different diseases, with the highest correlations occurring in the 10-200 kHz frequency range. Understanding these relationships will prove useful for future applications of the technique of EIM in the assessment of neuromuscular disorders.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0259071