Autoencoder based local T cell repertoire density can be used to classify samples and T cell receptors

Recent advances in T cell repertoire (TCR) sequencing allow for the characterization of repertoire properties, as well as the frequency and sharing of specific TCR. However, there is no efficient measure for the local density of a given TCR. TCRs are often described either through their Complementar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2021-07, Vol.17 (7), p.e1009225-e1009225
Hauptverfasser: Dvorkin, Shirit, Levi, Reut, Louzoun, Yoram
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent advances in T cell repertoire (TCR) sequencing allow for the characterization of repertoire properties, as well as the frequency and sharing of specific TCR. However, there is no efficient measure for the local density of a given TCR. TCRs are often described either through their Complementary Determining region 3 (CDR3) sequences, or theirV/J usage, or their clone size. We here show that the local repertoire density can be estimated using a combined representation of these components through distance conserving autoencoders and Kernel Density Estimates (KDE). We present ELATE–an Encoder-based LocAl Tcr dEnsity and show that the resulting density of a sample can be used as a novel measure to study repertoire properties. The cross-density between two samples can be used as a similarity matrix to fully characterize samples from the same host. Finally, the same projection in combination with machine learning algorithms can be used to predict TCR-peptide binding through the local density of known TCRs binding a specific target.
ISSN:1553-7358
1553-734X
1553-7358
DOI:10.1371/journal.pcbi.1009225