A novel algorithm for 3-D visualization of electrogram duration for substrate-mapping in patients with ischemic heart disease and ventricular tachycardia

Myocardial slow conduction is a cornerstone of ventricular tachycardia (VT). Prolonged electrogram (EGM) duration is a useful surrogate parameter and manual annotation of EGM characteristics are widely used during catheter-based ablation of the arrhythmogenic substrate. However, this remains time-co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2021-07, Vol.16 (7), p.e0254683
Hauptverfasser: Masjedi, Mustafa, Jungen, Christiane, Kuklik, Pawel, Alken, Fares-Alexander, Kahle, Ann-Kathrin, Klatt, Niklas, Scherschel, Katharina, Lorenz, Jürgen, Meyer, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Myocardial slow conduction is a cornerstone of ventricular tachycardia (VT). Prolonged electrogram (EGM) duration is a useful surrogate parameter and manual annotation of EGM characteristics are widely used during catheter-based ablation of the arrhythmogenic substrate. However, this remains time-consuming and prone to inter-operator variability. We aimed to develop an algorithm for 3-D visualization of EGM duration relative to the 17-segment American Heart Association model. To calculate and visualize EGM duration, in sinus rhythm acquired high-density maps of patients with ischemic cardiomyopathy undergoing substrate-based VT ablation using a 64-mini polar basket-catheter with low noise of 0.01 mV were analyzed. Using a custom developed algorithm based on standard deviation and threshold, the relationship between EGM duration, endocardial voltage and ablation areas was studied by creating 17-segment 3-D models and 2-D polar plots. 140,508 EGMs from 272 segments (n = 16 patients, 94% male, age: 66±2.4, ejection fraction: 31±2%) were studied and 3-D visualization of EGM duration was performed. Analysis of signal processing parameters revealed that a 40 ms sliding SD-window, 15% SD-threshold and >70 ms EGM duration cutoff was chosen based on diagnostic odds ratio of 12.77 to visualize rapidly prolonged EGM durations. EGMs > 70 ms matched to 99% of areas within dense scar (
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0254683