Model guided trait-specific co-expression network estimation as a new perspective for identifying molecular interactions and pathways

A wide variety of 1) parametric regression models and 2) co-expression networks have been developed for finding gene-by-gene interactions underlying complex traits from expression data. While both methodological schemes have their own well-known benefits, little is known about their synergistic pote...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2021-05, Vol.17 (5), p.e1008960-e1008960
Hauptverfasser: Kontio, Juho A J, Pyhäjärvi, Tanja, Sillanpää, Mikko J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A wide variety of 1) parametric regression models and 2) co-expression networks have been developed for finding gene-by-gene interactions underlying complex traits from expression data. While both methodological schemes have their own well-known benefits, little is known about their synergistic potential. Our study introduces their methodological fusion that cross-exploits the strengths of individual approaches via a built-in information-sharing mechanism. This fusion is theoretically based on certain trait-conditioned dependency patterns between two genes depending on their role in the underlying parametric model. Resulting trait-specific co-expression network estimation method 1) serves to enhance the interpretation of biological networks in a parametric sense, and 2) exploits the underlying parametric model itself in the estimation process. To also account for the substantial amount of intrinsic noise and collinearities, often entailed by expression data, a tailored co-expression measure is introduced along with this framework to alleviate related computational problems. A remarkable advance over the reference methods in simulated scenarios substantiate the method's high-efficiency. As proof-of-concept, this synergistic approach is successfully applied in survival analysis, with acute myeloid leukemia data, further highlighting the framework's versatility and broad practical relevance.
ISSN:1553-7358
1553-734X
1553-7358
DOI:10.1371/journal.pcbi.1008960