Dynamic decorrelation as a unifying principle for explaining a broad range of brightness phenomena

The visual system is highly sensitive to spatial context for encoding luminance patterns. Context sensitivity inspired the proposal of many neural mechanisms for explaining the perception of luminance (brightness). Here we propose a novel computational model for estimating the brightness of many vis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2021-04, Vol.17 (4), p.e1007907-e1007907
Hauptverfasser: Lerer, Alejandro, Supèr, Hans, Keil, Matthias S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1007907
container_issue 4
container_start_page e1007907
container_title PLoS computational biology
container_volume 17
creator Lerer, Alejandro
Supèr, Hans
Keil, Matthias S
description The visual system is highly sensitive to spatial context for encoding luminance patterns. Context sensitivity inspired the proposal of many neural mechanisms for explaining the perception of luminance (brightness). Here we propose a novel computational model for estimating the brightness of many visual illusions. We hypothesize that many aspects of brightness can be explained by a dynamic filtering process that reduces the redundancy in edge representations on the one hand, while non-redundant activity is enhanced on the other. The dynamic filter is learned for each input image and implements context sensitivity. Dynamic filtering is applied to the responses of (model) complex cells in order to build a gain control map. The gain control map then acts on simple cell responses before they are used to create a brightness map via activity propagation. Our approach is successful in predicting many challenging visual illusions, including contrast effects, assimilation, and reverse contrast with the same set of model parameters.
doi_str_mv 10.1371/journal.pcbi.1007907
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2528200874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A660614885</galeid><doaj_id>oai_doaj_org_article_33003ca63f1d44d49b415632dd303fe7</doaj_id><sourcerecordid>A660614885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c699t-aff21ade1f861ed1337f81b12f494c950e8bcc04d76e53ebfa4a3d9b233250cd3</originalsourceid><addsrcrecordid>eNqVkkuP0zAQgCMEYpfCP0BgiQscWuzYeV2QVsur0gokHmdrYo9TV6mdtRO0_fe4NLvaIi7IB9sz37wny54zumK8Ym-3fgoO-tWgWrtilFYNrR5k56wo-LLiRf3w3vssexLjltL0bMrH2RnnDWWsLM6z9v3ewc4qolH5ELCH0XpHIBIgk7Nmb11HhmCdskOPxPhA8GbowbqDAkgbPGgSwHVIvElf221GhzGSYYPO79DB0-yRgT7is_leZD8_fvhx-Xl59fXT-vLiaqnKphmXYEzOQCMzdclQM84rU7OW5UY0QjUFxbpVigpdlVhwbA0I4Lppc87zgirNF9nLo9-h91HO7YkyL_I6p7SuRCLWR0J72MpU1Q7CXnqw8o_Ah05CGK3qUXKeuqWg5IZpIbRoWsGKkudac8oNVsnXuzna1O5QK3RjgP7E6anG2Y3s_C9ZM5rTVN0iez07CP56wjjKnY0K-x4c-umQN0vDagStE_rqL_Tf1a2OVAepAOuMT3FVOhrTgL1DY5P8oixpyURdF8ngzYlBYka8GTuYYpTr79_-g_1yyoojq4KPMaC56wqj8rC7t-nLw-7KeXeT2Yv7Hb0zul1W_hva4evZ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528200874</pqid></control><display><type>article</type><title>Dynamic decorrelation as a unifying principle for explaining a broad range of brightness phenomena</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Lerer, Alejandro ; Supèr, Hans ; Keil, Matthias S</creator><contributor>Rudd, Michael</contributor><creatorcontrib>Lerer, Alejandro ; Supèr, Hans ; Keil, Matthias S ; Rudd, Michael</creatorcontrib><description>The visual system is highly sensitive to spatial context for encoding luminance patterns. Context sensitivity inspired the proposal of many neural mechanisms for explaining the perception of luminance (brightness). Here we propose a novel computational model for estimating the brightness of many visual illusions. We hypothesize that many aspects of brightness can be explained by a dynamic filtering process that reduces the redundancy in edge representations on the one hand, while non-redundant activity is enhanced on the other. The dynamic filter is learned for each input image and implements context sensitivity. Dynamic filtering is applied to the responses of (model) complex cells in order to build a gain control map. The gain control map then acts on simple cell responses before they are used to create a brightness map via activity propagation. Our approach is successful in predicting many challenging visual illusions, including contrast effects, assimilation, and reverse contrast with the same set of model parameters.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1007907</identifier><identifier>PMID: 33901165</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology and Life Sciences ; Brightness ; Brightness (Photometry) ; Contrast Sensitivity ; Engineering and Technology ; Evaluation ; Humans ; Light ; Measurement ; Medicine and Health Sciences ; Models, Biological ; Noise ; Noise propagation ; Optical illusions ; Perceptions ; Physical Sciences ; Propagation ; Social Sciences ; Visual Perception</subject><ispartof>PLoS computational biology, 2021-04, Vol.17 (4), p.e1007907-e1007907</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Lerer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Lerer et al 2021 Lerer et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c699t-aff21ade1f861ed1337f81b12f494c950e8bcc04d76e53ebfa4a3d9b233250cd3</citedby><cites>FETCH-LOGICAL-c699t-aff21ade1f861ed1337f81b12f494c950e8bcc04d76e53ebfa4a3d9b233250cd3</cites><orcidid>0000-0002-7321-2616 ; 0000-0001-9328-0096 ; 0000-0003-1035-4446</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8102013/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8102013/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33901165$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Rudd, Michael</contributor><creatorcontrib>Lerer, Alejandro</creatorcontrib><creatorcontrib>Supèr, Hans</creatorcontrib><creatorcontrib>Keil, Matthias S</creatorcontrib><title>Dynamic decorrelation as a unifying principle for explaining a broad range of brightness phenomena</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>The visual system is highly sensitive to spatial context for encoding luminance patterns. Context sensitivity inspired the proposal of many neural mechanisms for explaining the perception of luminance (brightness). Here we propose a novel computational model for estimating the brightness of many visual illusions. We hypothesize that many aspects of brightness can be explained by a dynamic filtering process that reduces the redundancy in edge representations on the one hand, while non-redundant activity is enhanced on the other. The dynamic filter is learned for each input image and implements context sensitivity. Dynamic filtering is applied to the responses of (model) complex cells in order to build a gain control map. The gain control map then acts on simple cell responses before they are used to create a brightness map via activity propagation. Our approach is successful in predicting many challenging visual illusions, including contrast effects, assimilation, and reverse contrast with the same set of model parameters.</description><subject>Biology and Life Sciences</subject><subject>Brightness</subject><subject>Brightness (Photometry)</subject><subject>Contrast Sensitivity</subject><subject>Engineering and Technology</subject><subject>Evaluation</subject><subject>Humans</subject><subject>Light</subject><subject>Measurement</subject><subject>Medicine and Health Sciences</subject><subject>Models, Biological</subject><subject>Noise</subject><subject>Noise propagation</subject><subject>Optical illusions</subject><subject>Perceptions</subject><subject>Physical Sciences</subject><subject>Propagation</subject><subject>Social Sciences</subject><subject>Visual Perception</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkkuP0zAQgCMEYpfCP0BgiQscWuzYeV2QVsur0gokHmdrYo9TV6mdtRO0_fe4NLvaIi7IB9sz37wny54zumK8Ym-3fgoO-tWgWrtilFYNrR5k56wo-LLiRf3w3vssexLjltL0bMrH2RnnDWWsLM6z9v3ewc4qolH5ELCH0XpHIBIgk7Nmb11HhmCdskOPxPhA8GbowbqDAkgbPGgSwHVIvElf221GhzGSYYPO79DB0-yRgT7is_leZD8_fvhx-Xl59fXT-vLiaqnKphmXYEzOQCMzdclQM84rU7OW5UY0QjUFxbpVigpdlVhwbA0I4Lppc87zgirNF9nLo9-h91HO7YkyL_I6p7SuRCLWR0J72MpU1Q7CXnqw8o_Ah05CGK3qUXKeuqWg5IZpIbRoWsGKkudac8oNVsnXuzna1O5QK3RjgP7E6anG2Y3s_C9ZM5rTVN0iez07CP56wjjKnY0K-x4c-umQN0vDagStE_rqL_Tf1a2OVAepAOuMT3FVOhrTgL1DY5P8oixpyURdF8ngzYlBYka8GTuYYpTr79_-g_1yyoojq4KPMaC56wqj8rC7t-nLw-7KeXeT2Yv7Hb0zul1W_hva4evZ</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Lerer, Alejandro</creator><creator>Supèr, Hans</creator><creator>Keil, Matthias S</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7321-2616</orcidid><orcidid>https://orcid.org/0000-0001-9328-0096</orcidid><orcidid>https://orcid.org/0000-0003-1035-4446</orcidid></search><sort><creationdate>20210401</creationdate><title>Dynamic decorrelation as a unifying principle for explaining a broad range of brightness phenomena</title><author>Lerer, Alejandro ; Supèr, Hans ; Keil, Matthias S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c699t-aff21ade1f861ed1337f81b12f494c950e8bcc04d76e53ebfa4a3d9b233250cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biology and Life Sciences</topic><topic>Brightness</topic><topic>Brightness (Photometry)</topic><topic>Contrast Sensitivity</topic><topic>Engineering and Technology</topic><topic>Evaluation</topic><topic>Humans</topic><topic>Light</topic><topic>Measurement</topic><topic>Medicine and Health Sciences</topic><topic>Models, Biological</topic><topic>Noise</topic><topic>Noise propagation</topic><topic>Optical illusions</topic><topic>Perceptions</topic><topic>Physical Sciences</topic><topic>Propagation</topic><topic>Social Sciences</topic><topic>Visual Perception</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lerer, Alejandro</creatorcontrib><creatorcontrib>Supèr, Hans</creatorcontrib><creatorcontrib>Keil, Matthias S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lerer, Alejandro</au><au>Supèr, Hans</au><au>Keil, Matthias S</au><au>Rudd, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic decorrelation as a unifying principle for explaining a broad range of brightness phenomena</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>17</volume><issue>4</issue><spage>e1007907</spage><epage>e1007907</epage><pages>e1007907-e1007907</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>The visual system is highly sensitive to spatial context for encoding luminance patterns. Context sensitivity inspired the proposal of many neural mechanisms for explaining the perception of luminance (brightness). Here we propose a novel computational model for estimating the brightness of many visual illusions. We hypothesize that many aspects of brightness can be explained by a dynamic filtering process that reduces the redundancy in edge representations on the one hand, while non-redundant activity is enhanced on the other. The dynamic filter is learned for each input image and implements context sensitivity. Dynamic filtering is applied to the responses of (model) complex cells in order to build a gain control map. The gain control map then acts on simple cell responses before they are used to create a brightness map via activity propagation. Our approach is successful in predicting many challenging visual illusions, including contrast effects, assimilation, and reverse contrast with the same set of model parameters.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33901165</pmid><doi>10.1371/journal.pcbi.1007907</doi><orcidid>https://orcid.org/0000-0002-7321-2616</orcidid><orcidid>https://orcid.org/0000-0001-9328-0096</orcidid><orcidid>https://orcid.org/0000-0003-1035-4446</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2021-04, Vol.17 (4), p.e1007907-e1007907
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2528200874
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Biology and Life Sciences
Brightness
Brightness (Photometry)
Contrast Sensitivity
Engineering and Technology
Evaluation
Humans
Light
Measurement
Medicine and Health Sciences
Models, Biological
Noise
Noise propagation
Optical illusions
Perceptions
Physical Sciences
Propagation
Social Sciences
Visual Perception
title Dynamic decorrelation as a unifying principle for explaining a broad range of brightness phenomena
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A37%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20decorrelation%20as%20a%20unifying%20principle%20for%20explaining%20a%20broad%20range%20of%20brightness%20phenomena&rft.jtitle=PLoS%20computational%20biology&rft.au=Lerer,%20Alejandro&rft.date=2021-04-01&rft.volume=17&rft.issue=4&rft.spage=e1007907&rft.epage=e1007907&rft.pages=e1007907-e1007907&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1007907&rft_dat=%3Cgale_plos_%3EA660614885%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528200874&rft_id=info:pmid/33901165&rft_galeid=A660614885&rft_doaj_id=oai_doaj_org_article_33003ca63f1d44d49b415632dd303fe7&rfr_iscdi=true