Dynamic decorrelation as a unifying principle for explaining a broad range of brightness phenomena
The visual system is highly sensitive to spatial context for encoding luminance patterns. Context sensitivity inspired the proposal of many neural mechanisms for explaining the perception of luminance (brightness). Here we propose a novel computational model for estimating the brightness of many vis...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2021-04, Vol.17 (4), p.e1007907-e1007907 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1007907 |
---|---|
container_issue | 4 |
container_start_page | e1007907 |
container_title | PLoS computational biology |
container_volume | 17 |
creator | Lerer, Alejandro Supèr, Hans Keil, Matthias S |
description | The visual system is highly sensitive to spatial context for encoding luminance patterns. Context sensitivity inspired the proposal of many neural mechanisms for explaining the perception of luminance (brightness). Here we propose a novel computational model for estimating the brightness of many visual illusions. We hypothesize that many aspects of brightness can be explained by a dynamic filtering process that reduces the redundancy in edge representations on the one hand, while non-redundant activity is enhanced on the other. The dynamic filter is learned for each input image and implements context sensitivity. Dynamic filtering is applied to the responses of (model) complex cells in order to build a gain control map. The gain control map then acts on simple cell responses before they are used to create a brightness map via activity propagation. Our approach is successful in predicting many challenging visual illusions, including contrast effects, assimilation, and reverse contrast with the same set of model parameters. |
doi_str_mv | 10.1371/journal.pcbi.1007907 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2528200874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A660614885</galeid><doaj_id>oai_doaj_org_article_33003ca63f1d44d49b415632dd303fe7</doaj_id><sourcerecordid>A660614885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c699t-aff21ade1f861ed1337f81b12f494c950e8bcc04d76e53ebfa4a3d9b233250cd3</originalsourceid><addsrcrecordid>eNqVkkuP0zAQgCMEYpfCP0BgiQscWuzYeV2QVsur0gokHmdrYo9TV6mdtRO0_fe4NLvaIi7IB9sz37wny54zumK8Ym-3fgoO-tWgWrtilFYNrR5k56wo-LLiRf3w3vssexLjltL0bMrH2RnnDWWsLM6z9v3ewc4qolH5ELCH0XpHIBIgk7Nmb11HhmCdskOPxPhA8GbowbqDAkgbPGgSwHVIvElf221GhzGSYYPO79DB0-yRgT7is_leZD8_fvhx-Xl59fXT-vLiaqnKphmXYEzOQCMzdclQM84rU7OW5UY0QjUFxbpVigpdlVhwbA0I4Lppc87zgirNF9nLo9-h91HO7YkyL_I6p7SuRCLWR0J72MpU1Q7CXnqw8o_Ah05CGK3qUXKeuqWg5IZpIbRoWsGKkudac8oNVsnXuzna1O5QK3RjgP7E6anG2Y3s_C9ZM5rTVN0iez07CP56wjjKnY0K-x4c-umQN0vDagStE_rqL_Tf1a2OVAepAOuMT3FVOhrTgL1DY5P8oixpyURdF8ngzYlBYka8GTuYYpTr79_-g_1yyoojq4KPMaC56wqj8rC7t-nLw-7KeXeT2Yv7Hb0zul1W_hva4evZ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528200874</pqid></control><display><type>article</type><title>Dynamic decorrelation as a unifying principle for explaining a broad range of brightness phenomena</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Lerer, Alejandro ; Supèr, Hans ; Keil, Matthias S</creator><contributor>Rudd, Michael</contributor><creatorcontrib>Lerer, Alejandro ; Supèr, Hans ; Keil, Matthias S ; Rudd, Michael</creatorcontrib><description>The visual system is highly sensitive to spatial context for encoding luminance patterns. Context sensitivity inspired the proposal of many neural mechanisms for explaining the perception of luminance (brightness). Here we propose a novel computational model for estimating the brightness of many visual illusions. We hypothesize that many aspects of brightness can be explained by a dynamic filtering process that reduces the redundancy in edge representations on the one hand, while non-redundant activity is enhanced on the other. The dynamic filter is learned for each input image and implements context sensitivity. Dynamic filtering is applied to the responses of (model) complex cells in order to build a gain control map. The gain control map then acts on simple cell responses before they are used to create a brightness map via activity propagation. Our approach is successful in predicting many challenging visual illusions, including contrast effects, assimilation, and reverse contrast with the same set of model parameters.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1007907</identifier><identifier>PMID: 33901165</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology and Life Sciences ; Brightness ; Brightness (Photometry) ; Contrast Sensitivity ; Engineering and Technology ; Evaluation ; Humans ; Light ; Measurement ; Medicine and Health Sciences ; Models, Biological ; Noise ; Noise propagation ; Optical illusions ; Perceptions ; Physical Sciences ; Propagation ; Social Sciences ; Visual Perception</subject><ispartof>PLoS computational biology, 2021-04, Vol.17 (4), p.e1007907-e1007907</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Lerer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Lerer et al 2021 Lerer et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c699t-aff21ade1f861ed1337f81b12f494c950e8bcc04d76e53ebfa4a3d9b233250cd3</citedby><cites>FETCH-LOGICAL-c699t-aff21ade1f861ed1337f81b12f494c950e8bcc04d76e53ebfa4a3d9b233250cd3</cites><orcidid>0000-0002-7321-2616 ; 0000-0001-9328-0096 ; 0000-0003-1035-4446</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8102013/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8102013/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33901165$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Rudd, Michael</contributor><creatorcontrib>Lerer, Alejandro</creatorcontrib><creatorcontrib>Supèr, Hans</creatorcontrib><creatorcontrib>Keil, Matthias S</creatorcontrib><title>Dynamic decorrelation as a unifying principle for explaining a broad range of brightness phenomena</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>The visual system is highly sensitive to spatial context for encoding luminance patterns. Context sensitivity inspired the proposal of many neural mechanisms for explaining the perception of luminance (brightness). Here we propose a novel computational model for estimating the brightness of many visual illusions. We hypothesize that many aspects of brightness can be explained by a dynamic filtering process that reduces the redundancy in edge representations on the one hand, while non-redundant activity is enhanced on the other. The dynamic filter is learned for each input image and implements context sensitivity. Dynamic filtering is applied to the responses of (model) complex cells in order to build a gain control map. The gain control map then acts on simple cell responses before they are used to create a brightness map via activity propagation. Our approach is successful in predicting many challenging visual illusions, including contrast effects, assimilation, and reverse contrast with the same set of model parameters.</description><subject>Biology and Life Sciences</subject><subject>Brightness</subject><subject>Brightness (Photometry)</subject><subject>Contrast Sensitivity</subject><subject>Engineering and Technology</subject><subject>Evaluation</subject><subject>Humans</subject><subject>Light</subject><subject>Measurement</subject><subject>Medicine and Health Sciences</subject><subject>Models, Biological</subject><subject>Noise</subject><subject>Noise propagation</subject><subject>Optical illusions</subject><subject>Perceptions</subject><subject>Physical Sciences</subject><subject>Propagation</subject><subject>Social Sciences</subject><subject>Visual Perception</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkkuP0zAQgCMEYpfCP0BgiQscWuzYeV2QVsur0gokHmdrYo9TV6mdtRO0_fe4NLvaIi7IB9sz37wny54zumK8Ym-3fgoO-tWgWrtilFYNrR5k56wo-LLiRf3w3vssexLjltL0bMrH2RnnDWWsLM6z9v3ewc4qolH5ELCH0XpHIBIgk7Nmb11HhmCdskOPxPhA8GbowbqDAkgbPGgSwHVIvElf221GhzGSYYPO79DB0-yRgT7is_leZD8_fvhx-Xl59fXT-vLiaqnKphmXYEzOQCMzdclQM84rU7OW5UY0QjUFxbpVigpdlVhwbA0I4Lppc87zgirNF9nLo9-h91HO7YkyL_I6p7SuRCLWR0J72MpU1Q7CXnqw8o_Ah05CGK3qUXKeuqWg5IZpIbRoWsGKkudac8oNVsnXuzna1O5QK3RjgP7E6anG2Y3s_C9ZM5rTVN0iez07CP56wjjKnY0K-x4c-umQN0vDagStE_rqL_Tf1a2OVAepAOuMT3FVOhrTgL1DY5P8oixpyURdF8ngzYlBYka8GTuYYpTr79_-g_1yyoojq4KPMaC56wqj8rC7t-nLw-7KeXeT2Yv7Hb0zul1W_hva4evZ</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Lerer, Alejandro</creator><creator>Supèr, Hans</creator><creator>Keil, Matthias S</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7321-2616</orcidid><orcidid>https://orcid.org/0000-0001-9328-0096</orcidid><orcidid>https://orcid.org/0000-0003-1035-4446</orcidid></search><sort><creationdate>20210401</creationdate><title>Dynamic decorrelation as a unifying principle for explaining a broad range of brightness phenomena</title><author>Lerer, Alejandro ; Supèr, Hans ; Keil, Matthias S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c699t-aff21ade1f861ed1337f81b12f494c950e8bcc04d76e53ebfa4a3d9b233250cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biology and Life Sciences</topic><topic>Brightness</topic><topic>Brightness (Photometry)</topic><topic>Contrast Sensitivity</topic><topic>Engineering and Technology</topic><topic>Evaluation</topic><topic>Humans</topic><topic>Light</topic><topic>Measurement</topic><topic>Medicine and Health Sciences</topic><topic>Models, Biological</topic><topic>Noise</topic><topic>Noise propagation</topic><topic>Optical illusions</topic><topic>Perceptions</topic><topic>Physical Sciences</topic><topic>Propagation</topic><topic>Social Sciences</topic><topic>Visual Perception</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lerer, Alejandro</creatorcontrib><creatorcontrib>Supèr, Hans</creatorcontrib><creatorcontrib>Keil, Matthias S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lerer, Alejandro</au><au>Supèr, Hans</au><au>Keil, Matthias S</au><au>Rudd, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic decorrelation as a unifying principle for explaining a broad range of brightness phenomena</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>17</volume><issue>4</issue><spage>e1007907</spage><epage>e1007907</epage><pages>e1007907-e1007907</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>The visual system is highly sensitive to spatial context for encoding luminance patterns. Context sensitivity inspired the proposal of many neural mechanisms for explaining the perception of luminance (brightness). Here we propose a novel computational model for estimating the brightness of many visual illusions. We hypothesize that many aspects of brightness can be explained by a dynamic filtering process that reduces the redundancy in edge representations on the one hand, while non-redundant activity is enhanced on the other. The dynamic filter is learned for each input image and implements context sensitivity. Dynamic filtering is applied to the responses of (model) complex cells in order to build a gain control map. The gain control map then acts on simple cell responses before they are used to create a brightness map via activity propagation. Our approach is successful in predicting many challenging visual illusions, including contrast effects, assimilation, and reverse contrast with the same set of model parameters.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33901165</pmid><doi>10.1371/journal.pcbi.1007907</doi><orcidid>https://orcid.org/0000-0002-7321-2616</orcidid><orcidid>https://orcid.org/0000-0001-9328-0096</orcidid><orcidid>https://orcid.org/0000-0003-1035-4446</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2021-04, Vol.17 (4), p.e1007907-e1007907 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2528200874 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Biology and Life Sciences Brightness Brightness (Photometry) Contrast Sensitivity Engineering and Technology Evaluation Humans Light Measurement Medicine and Health Sciences Models, Biological Noise Noise propagation Optical illusions Perceptions Physical Sciences Propagation Social Sciences Visual Perception |
title | Dynamic decorrelation as a unifying principle for explaining a broad range of brightness phenomena |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A37%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20decorrelation%20as%20a%20unifying%20principle%20for%20explaining%20a%20broad%20range%20of%20brightness%20phenomena&rft.jtitle=PLoS%20computational%20biology&rft.au=Lerer,%20Alejandro&rft.date=2021-04-01&rft.volume=17&rft.issue=4&rft.spage=e1007907&rft.epage=e1007907&rft.pages=e1007907-e1007907&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1007907&rft_dat=%3Cgale_plos_%3EA660614885%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528200874&rft_id=info:pmid/33901165&rft_galeid=A660614885&rft_doaj_id=oai_doaj_org_article_33003ca63f1d44d49b415632dd303fe7&rfr_iscdi=true |