Dynamic decorrelation as a unifying principle for explaining a broad range of brightness phenomena

The visual system is highly sensitive to spatial context for encoding luminance patterns. Context sensitivity inspired the proposal of many neural mechanisms for explaining the perception of luminance (brightness). Here we propose a novel computational model for estimating the brightness of many vis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2021-04, Vol.17 (4), p.e1007907-e1007907
Hauptverfasser: Lerer, Alejandro, Supèr, Hans, Keil, Matthias S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The visual system is highly sensitive to spatial context for encoding luminance patterns. Context sensitivity inspired the proposal of many neural mechanisms for explaining the perception of luminance (brightness). Here we propose a novel computational model for estimating the brightness of many visual illusions. We hypothesize that many aspects of brightness can be explained by a dynamic filtering process that reduces the redundancy in edge representations on the one hand, while non-redundant activity is enhanced on the other. The dynamic filter is learned for each input image and implements context sensitivity. Dynamic filtering is applied to the responses of (model) complex cells in order to build a gain control map. The gain control map then acts on simple cell responses before they are used to create a brightness map via activity propagation. Our approach is successful in predicting many challenging visual illusions, including contrast effects, assimilation, and reverse contrast with the same set of model parameters.
ISSN:1553-7358
1553-734X
1553-7358
DOI:10.1371/journal.pcbi.1007907