Vocalization with semi-occluded airways is favorable for optimizing sound production

Vocalization in mammals, birds, reptiles, and amphibians occurs with airways that have wide openings to free-space for efficient sound radiation, but sound is also produced with occluded or semi-occluded airways that have small openings to free-space. It is hypothesized that pressures produced insid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2021-03, Vol.17 (3), p.e1008744-e1008744
Hauptverfasser: Titze, Ingo R, Palaparthi, Anil, Cox, Karin, Stark, Amanda, Maxfield, Lynn, Manternach, Brian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Vocalization in mammals, birds, reptiles, and amphibians occurs with airways that have wide openings to free-space for efficient sound radiation, but sound is also produced with occluded or semi-occluded airways that have small openings to free-space. It is hypothesized that pressures produced inside the airway with semi-occluded vocalizations have an overall widening effect on the airway. This overall widening then provides more opportunity to produce wide-narrow contrasts along the airway for variation in sound quality and loudness. For human vocalization described here, special emphasis is placed on the epilaryngeal airway, which can be adjusted for optimal aerodynamic power transfer and for optimal acoustic source-airway interaction. The methodology is three-fold, (1) geometric measurement of airway dimensions from CT scans, (2) aerodynamic and acoustic impedance calculation of the airways, and (3) simulation of acoustic signals with a self-oscillating computational model of the sound source and wave propagation.
ISSN:1553-7358
1553-734X
1553-7358
DOI:10.1371/journal.pcbi.1008744