Egg nutritional modulation with amino acids improved performance in zebrafish larvae

New and more efficient methods to sustainably intensify Aquaculture production are essential to attain the seafood demand for direct human consumption in the near future. Nutrition has been identified as one strategy of early exposure that might affect animal early development and later phenotype. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2021-04, Vol.16 (4), p.e0248356-e0248356
Hauptverfasser: Navarro-Guillén, Carmen, do Vale Pereira, Gabriella, Lopes, André, Colen, Rita, Engrola, Sofia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:New and more efficient methods to sustainably intensify Aquaculture production are essential to attain the seafood demand for direct human consumption in the near future. Nutrition has been identified as one strategy of early exposure that might affect animal early development and later phenotype. This strategy may have positive consequences in the modulation of fish digestive physiology, which will correlate with higher performance outputs. Thus, improving fish digestive efficiency will lead to higher productivity and lower biogenic emission from aquaculture facilities, minimising the impact on the environment while increasing the biological efficiency. An innovative in ovo nutritional modulation technique based on low-frequency ultrasounds was used to enhance the transport of amino acids across the embryo membranes. An early stimulus with either arginine or glutamine, both involved in gut maturation, was applied in zebrafish (Danio rerio) embryos at 3.5 hours post-fertilization (hpf). At 22 days post-fertilization (dpf), growth performance, digestive enzyme activities and gut microbiota composition were analysed to evaluate the larval nutrition-induced metabolic plasticity and the effects on fish digestive efficiency. Results showed that fish survival was not affected either by the sonophoresis technique or amino acid supplementation. Final dry weight at 22 dpf was statistically higher in larvae from glutamine treatment when compared to the control even with lower trypsin activity, suggesting a higher nutrient digestion capacity, due to a slightly modulation of gut microbiota. Higher arginine supplementation levels should be tested as strategy to enhance growth at later developmental stages. In conclusion, this study demonstrated the efficiency of sonophoresis technique for in ovo nutritional modulation and suggests that in ovo glutamine supplementation might promote growth at later developmental stage through a positive microbiota modulation.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0248356