New generalized-X family: Modeling the reliability engineering applications

As is already known, statistical models are very important for modeling data in applied fields, particularly in engineering, medicine, and many other disciplines. In this paper, we propose a new family to introduce new distributions suitable for modeling reliability engineering data. We called our p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2021-03, Vol.16 (3), p.e0248312-e0248312
Hauptverfasser: Wang, Wanting, Ahmad, Zubair, Kharazmi, Omid, Ampadu, Clement Boateng, Hafez, E H, Mohie El-Din, Marwa M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As is already known, statistical models are very important for modeling data in applied fields, particularly in engineering, medicine, and many other disciplines. In this paper, we propose a new family to introduce new distributions suitable for modeling reliability engineering data. We called our proposed family a new generalized-X family of distributions. For the practical illustration, we introduced a new special sub-model, called the new generalized-Weibull distribution, to describe the new family's significance. For the proposed family, we introduced some mathematical reliability properties. The maximum likelihood estimators for the parameters of the new generalized-X distributions are derived. For assessing the performance of these estimators, a comprehensive Monte Carlo simulation study is carried out. To assess the efficiency of the proposed model, the new generalized-Weibull model is applied to the coating machine failure time data. Finally, Bayesian analysis and performance of Gibbs sampling for the coating machine failure time data are also carried out. Furthermore, the measures such as Gelman-Rubin, Geweke and Raftery-Lewis are used to track algorithm convergence.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0248312