Transcriptome-wide transmission disequilibrium analysis identifies novel risk genes for autism spectrum disorder

Recent advances in consortium-scale genome-wide association studies (GWAS) have highlighted the involvement of common genetic variants in autism spectrum disorder (ASD), but our understanding of their etiologic roles, especially the interplay with rare variants, is incomplete. In this work, we intro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2021-02, Vol.17 (2), p.e1009309-e1009309
Hauptverfasser: Huang, Kunling, Wu, Yuchang, Shin, Junha, Zheng, Ye, Siahpirani, Alireza Fotuhi, Lin, Yupei, Ni, Zheng, Chen, Jiawen, You, Jing, Keles, Sunduz, Wang, Daifeng, Roy, Sushmita, Lu, Qiongshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent advances in consortium-scale genome-wide association studies (GWAS) have highlighted the involvement of common genetic variants in autism spectrum disorder (ASD), but our understanding of their etiologic roles, especially the interplay with rare variants, is incomplete. In this work, we introduce an analytical framework to quantify the transmission disequilibrium of genetically regulated gene expression from parents to offspring. We applied this framework to conduct a transcriptome-wide association study (TWAS) on 7,805 ASD proband-parent trios, and replicated our findings using 35,740 independent samples. We identified 31 associations at the transcriptome-wide significance level. In particular, we identified POU3F2 (p = 2.1E-7), a transcription factor mainly expressed in developmental brain. Gene targets regulated by POU3F2 showed a 2.7-fold enrichment for known ASD genes (p = 2.0E-5) and a 2.7-fold enrichment for loss-of-function de novo mutations in ASD probands (p = 7.1E-5). These results provide a novel connection between rare and common variants, whereby ASD genes affected by very rare mutations are regulated by an unlinked transcription factor affected by common genetic variations.
ISSN:1553-7404
1553-7390
1553-7404
DOI:10.1371/journal.pgen.1009309