An epidemic model for non-first-order transmission kinetics

Compartmental models in epidemiology characterize the spread of an infectious disease by formulating ordinary differential equations to quantify the rate of disease progression through subpopulations defined by the Susceptible-Infectious-Removed (SIR) scheme. The classic rate law central to the SIR...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2021-03, Vol.16 (3), p.e0247512-e0247512
Hauptverfasser: Mun, Eun-Young, Geng, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Compartmental models in epidemiology characterize the spread of an infectious disease by formulating ordinary differential equations to quantify the rate of disease progression through subpopulations defined by the Susceptible-Infectious-Removed (SIR) scheme. The classic rate law central to the SIR compartmental models assumes that the rate of transmission is first order regarding the infectious agent. The current study demonstrates that this assumption does not always hold and provides a theoretical rationale for a more general rate law, inspired by mixed-order chemical reaction kinetics, leading to a modified mathematical model for non-first-order kinetics. Using observed data from 127 countries during the initial phase of the COVID-19 pandemic, we demonstrated that the modified epidemic model is more realistic than the classic, first-order-kinetics based model. We discuss two coefficients associated with the modified epidemic model: transmission rate constant k and transmission reaction order n. While k finds utility in evaluating the effectiveness of control measures due to its responsiveness to external factors, n is more closely related to the intrinsic properties of the epidemic agent, including reproductive ability. The rate law for the modified compartmental SIR model is generally applicable to mixed-kinetics disease transmission with heterogeneous transmission mechanisms. By analyzing early-stage epidemic data, this modified epidemic model may be instrumental in providing timely insight into a new epidemic and developing control measures at the beginning of an outbreak.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0247512