A message-passing multi-task architecture for the implicit event and polarity detection

Implicit sentiment analysis is a challenging task because the sentiment of a text is expressed in a connotative manner. To tackle this problem, we propose to use textual events as a knowledge source to enrich network representations. To consider task interactions, we present a novel lightweight join...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2021-03, Vol.16 (3), p.e0247704-e0247704
Hauptverfasser: Xiang, Chunli, Zhang, Junchi, Ji, Donghong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Implicit sentiment analysis is a challenging task because the sentiment of a text is expressed in a connotative manner. To tackle this problem, we propose to use textual events as a knowledge source to enrich network representations. To consider task interactions, we present a novel lightweight joint learning paradigm that can pass task-related messages between tasks during training iterations. This is distinct from previous methods that involve multi-task learning by simple parameter sharing. Besides, a human-annotated corpus with implicit sentiment labels and event labels is scarce, which hinders practical applications of deep neural models. Therefore, we further investigate a back-translation approach to expand training instances. Experiment results on a public benchmark demonstrate the effectiveness of both the proposed multi-task architecture and data augmentation strategy.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0247704