Optimizing multi-supplier multi-item joint replenishment problem for non-instantaneous deteriorating items with quantity discounts

This paper deals with a new joint replenishment problem, in which a number of non-instantaneous deteriorating items are replenished from several suppliers under different quantity discounts schemes. Involving both joint replenishment decisions and supplier selection decisions makes the problem to be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2021-02, Vol.16 (2), p.e0246035-e0246035
Hauptverfasser: Ai, Xueyi, Yue, Yi, Xu, Haoxuan, Deng, Xudong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper deals with a new joint replenishment problem, in which a number of non-instantaneous deteriorating items are replenished from several suppliers under different quantity discounts schemes. Involving both joint replenishment decisions and supplier selection decisions makes the problem to be NP-hard. In particular, the consideration of non-instantaneous deterioration makes it more challenging to handle. We first construct a mathematical model integrated with a supplier selection system and a joint replenishment program for non-instantaneous deteriorating items to formulate the problem. Then we develop a novel swarm intelligence optimization algorithm, the Improved Moth-flame Optimization (IMFO) algorithm, to solve the proposed model. The results of several numerical experiments analyses reveal that the IMFO algorithm is an effective algorithm for solving the proposed model in terms of solution quality and searching stableness. Finally, we conduct extensive experiments to further investigate the performance of the proposed model.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0246035