A versatile cryo-transfer system, connecting cryogenic focused ion beam sample preparation to atom probe microscopy

Atom probe tomography (APT) is a powerful technique to obtain 3D chemical and structural information, however the 'standard' atom probe experimental workflow involves transfer of specimens at ambient conditions. The ability to transfer air- or thermally-sensitive samples between instrument...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2021-01, Vol.16 (1), p.e0245555
Hauptverfasser: Macauley, Chandra, Heller, Martina, Rausch, Alexander, Kümmel, Frank, Felfer, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Atom probe tomography (APT) is a powerful technique to obtain 3D chemical and structural information, however the 'standard' atom probe experimental workflow involves transfer of specimens at ambient conditions. The ability to transfer air- or thermally-sensitive samples between instruments while maintaining environmental control is critical to prevent chemical or morphological changes prior to analysis for a variety of interesting sample materials. In this article, we describe a versatile transfer system that enables cryogenic- or room-temperature transfer of specimens in vacuum or atmospheric conditions between sample preparation stations, a focused ion beam system (Zeiss Crossbeam 540) and a widely used commercial atom probe system (CAMECA LEAP 4000X HR). As an example for the use of this transfer system, we present atom probe data of gallium- (Ga)-free grain boundaries in an aluminum (Al) alloy specimen prepared with a Ga-based FIB.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0245555