Reno-protective effect of IL-34 inhibition on cisplatin-induced nephrotoxicity in mice
Interleukin-34 (IL-34) shares a receptor (cFMS) with colony stimulating factor-1 (CSF-1), and these two ligands mediate macrophage proliferation. However, in contrast to CSF-1, the influence of IL-34 on tubular epithelial cells (TECs) injury remains unclear. We investigated the physiological effects...
Gespeichert in:
Veröffentlicht in: | PloS one 2021-01, Vol.16 (1), p.e0245340 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Interleukin-34 (IL-34) shares a receptor (cFMS) with colony stimulating factor-1 (CSF-1), and these two ligands mediate macrophage proliferation. However, in contrast to CSF-1, the influence of IL-34 on tubular epithelial cells (TECs) injury remains unclear. We investigated the physiological effects of IL-34 on TEC damage caused by cisplatin nephrotoxicity (CP-N).
Mice were administered anti-mouse IL-34 antibody (anti-IL-34 Ab; 400 ng/kg) or vehicle from 1 day before and up to 2 days after CP-N induction. In vitro, mouse renal proximal TECs (MRPTEpiC) were cultured to analyze the inhibitory effects of IL-34 on CP-induced TEC apoptosis.
Compared to vehicle treatment, anti-IL-34 Ab treatment significantly suppressed the intra-renal expression of IL-34 and its two receptors, cFMS and PTP-ζ, and significantly improved renal function, ameliorated tubulointerstitial injury, suppressed macrophage infiltration, and reduced apoptotic cell numbers in CP-N mice. It also significantly reduced the renal transcript levels of Kim-1, MIP-1/CCL3, TNF-α, and Bax in CP-N mice. Furthermore, anti-IL-34 Ab-treated CP-N mice showed less renal infiltration of F4/80+TNF-α+ cells. In vitro, stimulation with CP induced the expression of IL-34 and its two receptors in MRPTEpiC. Anti-IL-34 Ab treatment significantly suppressed CP-induced Bax expression with the degradation of ERK1/2 phosphorylation in damaged MRPTEpiC.
IL-34 secreted from damaged TECs appeared to be involved in the progression of CP-N. Inhibition of IL-34 with neutralizing antibody directly prevented CP-induced TEC apoptosis by inhibiting the phosphorylation of ERK 1/2. Blocking of IL-34 appears to suppress the proliferation of cytotoxic macrophages, which indirectly attenuates CP-N. Thus, IL-34 represents a potential therapeutic target for TEC injury, and the inhibition of IL-34 might have a reno-protective effect. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0245340 |