Polish is quantitatively different on quartzite flakes used on different worked materials

Metrology has been successfully used in the last decade to quantify use-wear on stone tools. Such techniques have been mostly applied to fine-grained rocks (chert), while studies on coarse-grained raw materials have been relatively infrequent. In this study, confocal microscopy was employed to inves...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-12, Vol.15 (12), p.e0243295-e0243295
Hauptverfasser: Pedergnana, Antonella, Calandra, Ivan, Evans, Adrian A, Bob, Konstantin, Hildebrandt, Andreas, Ollé, Andreu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Metrology has been successfully used in the last decade to quantify use-wear on stone tools. Such techniques have been mostly applied to fine-grained rocks (chert), while studies on coarse-grained raw materials have been relatively infrequent. In this study, confocal microscopy was employed to investigate polished surfaces on a coarse-grained lithology, quartzite. Wear originating from contact with five different worked materials were classified in a data-driven approach using machine learning. Two different classifiers, a decision tree and a support-vector machine, were used to assign the different textures to a worked material based on a selected number of parameters (Mean density of furrows, Mean depth of furrows, Core material volume-Vmc). The method proved successful, presenting high scores for bone and hide (100%). The obtained classification rates are satisfactory for the other worked materials, with the only exception of cane, which shows overlaps with other materials. Although the results presented here are preliminary, they can be used to develop future studies on quartzite including enlarged sample sizes.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0243295