Long-range movements coupled with heterogeneous incubation period sustain dog rabies at the national scale in Africa
Dog-transmitted rabies is responsible for more than 98% of human cases worldwide, remaining a persistent problem in developing countries. Mass vaccination targets predominantly major cities, often compromising disease control due to re-introductions. Previous work suggested that areas neighboring ci...
Gespeichert in:
Veröffentlicht in: | PLoS neglected tropical diseases 2020-05, Vol.14 (5), p.e0008317-e0008317 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Dog-transmitted rabies is responsible for more than 98% of human cases worldwide, remaining a persistent problem in developing countries. Mass vaccination targets predominantly major cities, often compromising disease control due to re-introductions. Previous work suggested that areas neighboring cities may behave as the source of these re-introductions. To evaluate this hypothesis, we introduce a spatially explicit metapopulation model for rabies diffusion in Central African Republic. Calibrated on epidemiological data for the capital city, Bangui, the model predicts that long-range movements are essential for continuous re-introductions of rabies-exposed dogs across settlements, eased by the large fluctuations of the incubation period. Bangui's neighborhood, instead, would not be enough to self-sustain the epidemic, contrary to previous expectations. Our findings suggest that restricting long-range travels may be very efficient in limiting rabies persistence in a large and fragmented dog population. Our framework can be applied to other geographical contexts where dog rabies is endemic. |
---|---|
ISSN: | 1935-2735 1935-2727 1935-2735 |
DOI: | 10.1371/journal.pntd.0008317 |