Genome Complexity Browser: Visualization and quantification of genome variability

Comparative genomics studies may be used to acquire new knowledge regarding genome architecture, which defines the rules for combining sets of genes in the genome of living organisms. Hundreds of thousands of prokaryotic genomes have been sequenced and assembled. However, computational tools capable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2020-10, Vol.16 (10), p.e1008222-e1008222
Hauptverfasser: Manolov, Alexander, Konanov, Dmitry, Fedorov, Dmitry, Osmolovsky, Ivan, Vereshchagin, Rinat, Ilina, Elena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Comparative genomics studies may be used to acquire new knowledge regarding genome architecture, which defines the rules for combining sets of genes in the genome of living organisms. Hundreds of thousands of prokaryotic genomes have been sequenced and assembled. However, computational tools capable of simultaneously comparing large numbers of genomes are lacking. We developed the Genome Complexity Browser, a tool that allows the visualization of gene contexts, in a graph-based format, and the quantification of variability for different segments of a genome. The graph-based visualization allows the inspection of changes in gene contents and neighborhoods across hundreds of genomes, simultaneously, which may facilitate the identification of conserved and variable segments of operons or the estimation of the overall variability associated with a particular genome locus. We introduced a measure called complexity, to quantify genome variability. Intraspecies and interspecies comparisons revealed that regions with high complexity values tended to be located in areas that are conserved across different strains and species.
ISSN:1553-7358
1553-734X
1553-7358
DOI:10.1371/journal.pcbi.1008222