Modeling the temporal network dynamics of neuronal cultures

Neurons form complex networks that evolve over multiple time scales. In order to thoroughly characterize these networks, time dependencies must be explicitly modeled. Here, we present a statistical model that captures both the underlying structural and temporal dynamics of neuronal networks. Our mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2020-05, Vol.16 (5), p.e1007834-e1007834
Hauptverfasser: Cadena, Jose, Sales, Ana Paula, Lam, Doris, Enright, Heather A, Wheeler, Elizabeth K, Fischer, Nicholas O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Neurons form complex networks that evolve over multiple time scales. In order to thoroughly characterize these networks, time dependencies must be explicitly modeled. Here, we present a statistical model that captures both the underlying structural and temporal dynamics of neuronal networks. Our model combines the class of Stochastic Block Models for community formation with Gaussian processes to model changes in the community structure as a smooth function of time. We validate our model on synthetic data and demonstrate its utility on three different studies using in vitro cultures of dissociated neurons.
ISSN:1553-7358
1553-734X
1553-7358
DOI:10.1371/journal.pcbi.1007834