Subject validation of reusable N95 stop-gap filtering facepiece respirators in COVID-19 pandemic

The COVID-19 pandemic has unveiled widespread shortages of personal protective equipment including N95 respirators. Several centers are developing reusable stop-gap respirators as alternatives to disposable N95 respirators during public health emergencies, using techniques such as 3D-printing, silic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-11, Vol.15 (11), p.e0242304-e0242304
Hauptverfasser: Ng, William C K, Mbadjeu Hondjeu, Arnaud Romeo, Syrett, Andrew, Caragata, Rebecca, Rozenberg, Dmitry, Xiao, Zixuan, Anwari, Vahid, Trac, Jessica, Mashari, Azad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The COVID-19 pandemic has unveiled widespread shortages of personal protective equipment including N95 respirators. Several centers are developing reusable stop-gap respirators as alternatives to disposable N95 respirators during public health emergencies, using techniques such as 3D-printing, silicone moulding and plastic extrusion. Effective sealing of the mask, combined with respiratory filters should achieve 95% or greater filtration of particles less than 1um. Quantitative fit-testing (QNFT) data from these stop-gap devices has not been published to date. Our team developed one such device, the "SSM", and evaluated it using QNFT. Device prototypes were iteratively evaluated for comfort, breathability and communication, by team members wearing them for 15-30min. The fit and seal were assessed by positive and negative pressure user seal checks. The final design was then formally tested by QNFT, according to CSA standard Z94.4-18 in 40 volunteer healthcare providers. An overall fit-factor >100 is the passing threshold. Volunteers were also tested by QNFT on disposable N95 masks which had passed qualitative fit testing (QLFT) by institutional Occupational Health and Safety Department. The SSM scored 3.5/5 and 4/5 for comfort and breathability. The median overall harmonic mean fit-factors of disposable N95 and SSM were 137.9 and 6316.7 respectively. SSM scored significantly higher than disposable respirators in fit-test runs and overall fit-factors (p
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0242304