Better coverage, better outcomes? Mapping mobile network data to official statistics using satellite imagery and radio propagation modelling

Mobile sensing data has become a popular data source for geo-spatial analysis, however, mapping it accurately to other sources of information such as statistical data remains a challenge. Popular mapping approaches such as point allocation or voronoi tessellation provide only crude approximations of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-11, Vol.15 (11), p.e0241981-e0241981
1. Verfasser: Koebe, Till
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mobile sensing data has become a popular data source for geo-spatial analysis, however, mapping it accurately to other sources of information such as statistical data remains a challenge. Popular mapping approaches such as point allocation or voronoi tessellation provide only crude approximations of the mobile network coverage as they do not consider holes, overlaps and within-cell heterogeneity. More elaborate mapping schemes often require additional proprietary data operators are highly reluctant to share. In this paper, I use human settlement information extracted from publicly available satellite imagery in combination with stochastic radio propagation modelling techniques to account for that. I show in a simulation study and a real-world application on unemployment estimates in Senegal that better coverage approximations do not necessarily lead to better outcome predictions.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0241981