Hybrid algorithms for generating optimal designs for discriminating multiple nonlinear models under various error distributional assumptions

Finding a model-based optimal design that can optimally discriminate among a class of plausible models is a difficult task because the design criterion is non-differentiable and requires 2 or more layers of nested optimization. We propose hybrid algorithms based on particle swarm optimization (PSO)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-10, Vol.15 (10), p.e0239864
Hauptverfasser: Chen, Ray-Bing, Chen, Ping-Yang, Hsu, Cheng-Lin, Wong, Weng Kee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Finding a model-based optimal design that can optimally discriminate among a class of plausible models is a difficult task because the design criterion is non-differentiable and requires 2 or more layers of nested optimization. We propose hybrid algorithms based on particle swarm optimization (PSO) to solve such optimization problems, including cases when the optimal design is singular, the mean response of some models are not fully specified and problems that involve 4 layers of nested optimization. Using several classical examples, we show that the proposed PSO-based algorithms are not models or criteria specific, and with a few repeated runs, can produce either an optimal design or a highly efficient design. They are also generally faster than the current algorithms, which are generally slow and work for only specific models or discriminating criteria. As an application, we apply our techniques to find optimal discriminating designs for a dose-response study in toxicology with 5 possible models and compare their performances with traditional and a recently proposed algorithm. In the supplementary material, we provide a R package to generate different types of discriminating designs and evaluate efficiencies of competing designs so that the user can implement an informed design.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0239864