Early warning model for passenger disturbance due to flight delays

Disruptive behavior by passengers delayed at airport terminals not only affects personal safety but also reduces civil aviation efficiency and passenger satisfaction. This study investigated the causal mechanisms of disruptive behavior by delayed passengers in three aspects: environmental, manageria...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-09, Vol.15 (9), p.e0239141-e0239141
Hauptverfasser: Gu, Yunyan, Yang, Jianhua, Wang, Conghui, Xie, Guo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Disruptive behavior by passengers delayed at airport terminals not only affects personal safety but also reduces civil aviation efficiency and passenger satisfaction. This study investigated the causal mechanisms of disruptive behavior by delayed passengers in three aspects: environmental, managerial, and personal. Data on flight delays at Shenzhen Airport in 2018 were collected and analyzed. The main factors leading to disruptive behavior by delayed passengers were identified, and an early warning model for disturbances was developed using multiple logistic regression and a back-propagation(BP) neural network. The results indicated that the proposed model and method were feasible. Compared to the logistic regression model, the BP neural network model had advantages in predicting disturbances by delayed passengers, showing higher prediction accuracy. The BP network weight analysis method was used to obtain the influence weight of each factor on behavior change of delayed passengers. The influence weight of different factors was obtained, providing an assistant decision-making method to address disruption from flight-delayed passengers.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0239141