Regional sequence expansion or collapse in heterozygous genome assemblies

High levels of heterozygosity present a unique genome assembly challenge and can adversely impact downstream analyses, yet is common in sequencing datasets obtained from non-model organisms. Here we show that by re-assembling a heterozygous dataset with variant parameters and different assembly algo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2020-07, Vol.16 (7), p.e1008104-e1008104
Hauptverfasser: Asalone, Kathryn C, Ryan, Kara M, Yamadi, Maryam, Cohen, Annastelle L, Farmer, William G, George, Deborah J, Joppert, Claudia, Kim, Kaitlyn, Mughal, Madeeha Froze, Said, Rana, Toksoz-Exley, Metin, Bisk, Evgeny, Bracht, John R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High levels of heterozygosity present a unique genome assembly challenge and can adversely impact downstream analyses, yet is common in sequencing datasets obtained from non-model organisms. Here we show that by re-assembling a heterozygous dataset with variant parameters and different assembly algorithms, we are able to generate assemblies whose protein annotations are statistically enriched for specific gene ontology categories. While total assembly length was not significantly affected by assembly methodologies tested, the assemblies generated varied widely in fragmentation level and we show local assembly collapse or expansion underlying the enrichment or depletion of specific protein functional groups. We show that these statistically significant deviations in gene ontology groups can occur in seemingly high-quality assemblies, and result from difficult-to-detect local sequence expansion or contractions. Given the unpredictable interplay between assembly algorithm, parameter, and biological sequence data heterozygosity, we highlight the need for better measures of assembly quality than N50 value, including methods for assessing local expansion and collapse.
ISSN:1553-7358
1553-734X
1553-7358
DOI:10.1371/journal.pcbi.1008104