Experimental study of high-flow and low-expansion backfill material
High-flow low-expansion backfill materials have been developed to improve difficult slurry pipeline transport and poor roof-contact effect of many filling materials. The fly ash content was fixed at 80%, with 8.5% - 9.5% mineral powder content, 8.5% - 9.5% lime, 2% - 3% desulfurized gypsum, 0.9% - 1...
Gespeichert in:
Veröffentlicht in: | PloS one 2020-08, Vol.15 (8), p.e0236718-e0236718 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | High-flow low-expansion backfill materials have been developed to improve difficult slurry pipeline transport and poor roof-contact effect of many filling materials. The fly ash content was fixed at 80%, with 8.5% - 9.5% mineral powder content, 8.5% - 9.5% lime, 2% - 3% desulfurized gypsum, 0.9% - 1.2% sodium carbonate, and 0.01% - 0.02% aluminum powder content. The prepared backfill material processed good fluidity, with the expansion rate of the hardened material reaching 2% - 3%, and compressive strength on 90 d reaching 4 MPa-5.5 MPa. SEM observations indicated that as the aluminum content increased, ettringite on bubble walls transformed from a fine-needle to needle-rod shape. Secondly, the hydration products of the system were mainly hydrated calcium silicate gel and ettringite, which interconnected and promoted the formation of the structure. The backfill material has extensive sources of raw materials, low cost, simple filling process, and good filling effect. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0236718 |