The effect of neighborhood social environment on prostate cancer development in black and white men at high risk for prostate cancer
Neighborhood socioeconomic (nSES) factors have been implicated in prostate cancer (PCa) disparities. In line with the Precision Medicine Initiative that suggests clinical and socioenvironmental factors can impact PCa outcomes, we determined whether nSES variables are associated with time to PCa diag...
Gespeichert in:
Veröffentlicht in: | PloS one 2020-08, Vol.15 (8), p.e0237332-e0237332 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Neighborhood socioeconomic (nSES) factors have been implicated in prostate cancer (PCa) disparities. In line with the Precision Medicine Initiative that suggests clinical and socioenvironmental factors can impact PCa outcomes, we determined whether nSES variables are associated with time to PCa diagnosis and could inform PCa clinical risk assessment. The study sample included 358 high risk men (PCa family history and/or Black race), aged 35-69 years, enrolled in an early detection program. Patient variables were linked to 78 nSES variables (employment, income, etc.) from previous literature via geocoding. Patient-level models, including baseline age, prostate specific antigen (PSA), digital rectal exam, as well as combined models (patient plus nSES variables) by race/PCa family history subgroups were built after variable reduction methods using Cox regression and LASSO machine-learning. Model fit of patient and combined models (AIC) were compared; p-values3 bedrooms) and unemployment were significant in Black men with and without a PCa family history, respectively. The 5-year predicted probability of PCa was higher in men with a high neighborhood score (weighted combination of significant nSES variables) compared to a low score (e.g., Baseline PSA level of 4ng/mL for men with PCa family history: White-26.7% vs 7.7%; Black-56.2% vs 29.7%). Utilizing neighborhood data during patient risk assessment may be useful for high risk men affected by disparities. However, future studies with larger samples and validation/replication steps are needed. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0237332 |