A novel scaling methodology to reduce the biases associated with missing data from commercial activity monitors

Background Commercial physical activity monitors have wide utility in the assessment of physical activity in research and clinical settings, however, the removal of devices results in missing data and has the potential to bias study conclusions. This study aimed to evaluate methods to address missin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-06, Vol.15 (6), p.e0235144-e0235144
Hauptverfasser: O'Driscoll, R, Turicchi, J, Duarte, C, Michalowska, J, Larsen, S.C, Palmeira, A.L, Heitmann, B.L, Horgan, G.W, Stubbs, R.J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background Commercial physical activity monitors have wide utility in the assessment of physical activity in research and clinical settings, however, the removal of devices results in missing data and has the potential to bias study conclusions. This study aimed to evaluate methods to address missingness in data collected from commercial activity monitors. Methods This study utilised 1526 days of near complete data from 109 adults participating in a European weight loss maintenance study (NoHoW). We conducted simulation experiments to test a novel scaling methodology (NoHoW method) and alternative imputation strategies (overall/individual mean imputation, overall/individual multiple imputation, Kalman imputation and random forest imputation). Methods were compared for hourly, daily and 14-day physical activity estimates for steps, total daily energy expenditure (TDEE) and time in physical activity categories. In a second simulation study, individual multiple imputation, Kalman imputation and the NoHoW method were tested at different positions and quantities of missingness. Equivalence testing and root mean squared error (RMSE) were used to evaluate the ability of each of the strategies relative to the true data. Results The NoHoW method, Kalman imputation and multiple imputation methods remained statistically equivalent (p
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0235144