Prediction of miRNA targets by learning from interaction sequences

MicroRNAs (miRNAs) are involved in a diverse variety of biological processes through regulating the expression of target genes in the post-transcriptional level. So, it is of great importance to discover the targets of miRNAs in biological research. But, due to the short length of miRNAs and limited...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-05, Vol.15 (5), p.e0232578-e0232578
Hauptverfasser: Zheng, Xueming, Chen, Long, Li, Xiuming, Zhang, Ying, Xu, Shungao, Huang, Xinxiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:MicroRNAs (miRNAs) are involved in a diverse variety of biological processes through regulating the expression of target genes in the post-transcriptional level. So, it is of great importance to discover the targets of miRNAs in biological research. But, due to the short length of miRNAs and limited sequence complementarity to their gene targets in animals, it is challenging to develop algorithms to predict the targets of miRNA accurately. Here we developed a new miRNA target prediction algorithm using a multilayer convolutional neural network. Our model learned automatically the interaction patterns of the experiment-validated miRNA:target-site chimeras from the raw sequence, avoiding hand-craft selection of features by domain experts. The performance on test dataset is inspiring, indicating great generalization ability of our model. Moreover, considering the stability of miRNA:target-site duplexes, our method also showed good performance to predict the target transcripts of miRNAs.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0232578