The complex nest architecture of the Ponerinae ant Odontomachus chelifer

In social insects, nests are very important structures built to provide a protected microhabitat for immature development and food storage and are the places where most interactions between all members of a colony occur. Considering that nest architecture is an important behavioural trait that can c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2018-01, Vol.13 (1), p.e0189896-e0189896
Hauptverfasser: Guimarães, Ingrid de Carvalho, Pereira, Márlon César, Batista, Nathan Rodrigues, Rodrigues, Candida Anitta Pereira, Antonialli, Junior, William Fernando
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In social insects, nests are very important structures built to provide a protected microhabitat for immature development and food storage and are the places where most interactions between all members of a colony occur. Considering that nest architecture is an important behavioural trait that can clarify essential points of the social level of the species, here we describe the architectural model of the Ponerinae ant Odontomachus chelifer. Five subterranean nests were excavated; one of them filled with liquid cement for extraction of casts of chambers, shafts and tunnels. All nests were found in a woodland area, with Dystrophic Red Latosol soil, associated with roots of large trees and, differently from the pattern currently described for this subfamily, presented a complex structure with multiple entrances and more than one vertical shaft connected by tunnels to relatively horizontal chambers. The number of chambers varied from 24 to 77, with mean volume ranging from 200.09 cm3 to 363.79 cm3, and maximum depth of 134 cm. Worker population varied between 304 and 864 individuals with on average 8.28 cm2 of area per worker. All nests had at least one Hall, which is a relatively larger chamber serving as a distribution centre of the nest, and to our knowledge, there is no record of Ponerinae species building similar structure. All nests had chambers "paved" with pieces of decaying plant material and on the floor of some of them, we found a fungus whose identification and function are being investigated. Thus, our findings provide evidence to suggest that nests of O. chelifer can be considered complex, due to the great number and organization of chambers, shafts and connections, compared to those currently described for Ponerinae species.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0189896